Changes for the Better
Programmable Controllers
MELSEC-L series

Little on size, Large on performance

The new L series has a small footprint and is loaded with features.

global impact of MITSUBISHI ELECTRIC

Through Mitsubishi Electric's vision, "Changes for the Better" are possible for a brighter future.

Changes for the Better

We bring together the best minds to create the best technologies. At Mitsubishi Electric, we understand that technology is the driving force of change in our lives. By bringing greater comfort to daily life, maximizing the efficiency of businesses and keeping things running across society, we integrate technology and innovation to bring changes for the better.

Mitsubishi Electric is involved in many areas including the following

Energy and Electric Systems

A wide range of power and electrical products from generators to large-scale displays.

Electronic Devices

A wide portfolio of cutting-edge semiconductor devices for systems and products.

Home Appliance

Dependable consumer products like air conditioners and home entertainment systems.

Information and Communication Systems

Commercial and consumer-centric equipment, products and systems.

Industrial Automation Systems

Maximizing productivity and efficiency with cutting-edge automation technology.

Simple

Flexible

Convenience that fits in the palm of your hand

The L Series is a compact-class controller, part of the MELSEC products renowned for exceptional cost verses performance and strong reliability. It provides the performance, functions, and capabilities required for today's demanding applications in a small package.
MELSEC-L Series greatly expands the range of functionality traditionally associated with compact programmable controllers and through user-centric design, pushes the limits of ease of use.

Ideally configured to satisfy the applications requirements

MELSEC L Series has been designed with three key concepts in mind.

Reliability

Robust and trusted MELSEC product quality.

Ease-of-use

Enabling engineers and programmers to do their job as efficiently as possible to reduce costs.

Flexibility

L Series is a cost-efficient control system flexible to
various applications, enabling an ideal system design.

Flexible I/O/
High-Speed Counter P. 48

Network
P. 51

Digital Link Sensor
P. 60

Software
P. 63

[^0]

Easy setup of built-in I/O functions

Configuring built-in I/O functions can be done easily by setting parameters using the programming tool.

Built-in I/O function example parameter settings Pulse Catch: 0.01 ms (response time) Interrupt Input: 1 ms (response time)

Positioning function example parameter settings Pulse Output Mode: CW/CCW mode
Rotation Direction Setting:
Current Value Increment with Forward Run Pulse Output

High-speed counter function example parameter settings Pulse Input Mode: 1-Phase Multiple of 1 Counting Speed Setting: 100 kpps

Built-in CPU positioning control function

Positioning function

The built-in positioning function has a start time of just $30 \mu \mathrm{~s}$ with a maximum high speed output of 200 K pulses per second.
Furthermore, it supports S-curve acceleration and deceleration for applications that require minimal machine vibration.

High-speed counter function

Two channels support the high speed counting function. The differential line driver inputs support counting speeds up to 200K pulses per second.

Make highly accurate measurements with a resolution of $5 \mu \mathrm{~s}$
High-Speed Counter
Using pulse measurement mode, where the input signal ON/
OFF time is $200 \mu \mathrm{~s}$ or greater, highly accurate measurements in units of $5 \mu \mathrm{~s}$ or greater are possible.
For example it is possible to calculate length by knowing the "work object passing speed" and measuring the ON time of the sensor.

High precision PWM control up to 200 kHz
Using the pulse width modulation control function of the high speed outputs, cycle times as fast as $5 \mu \mathrm{~s}$ can be created. Simply input the ON time and cycle time to drive a wide range of devices from lighting dimmer control, motors, and heaters to precision inspection equipment requiring high resolution performance.

Setting item	Setting range	Description
PWM output ON time* ${ }^{\star 1}$	$\begin{gathered} 0 \text { or } 10 \ldots \\ 10000000^{\star 1}(0.1 \mu \mathrm{~s}) \end{gathered}$	Set the ON time of output pulse
PWM output cycle time*1	50...10000000*1 ${ }^{(0.1} \mu \mathrm{s}$)	Set the cycle time of output pulse
*1: The PWM output ON time must be \leq than PWM output cycle time.		
	PWM output ON time PWM output cycle time	D: Duty Cycle $\tau:$ ON time $\mathrm{T}:$ Cycle time

*2: In cases where the first six digits of the serial number are "120722" or later. Previous serial numbers of the CPU module are applied to 100 mA .

High-Speed Counter

Guaranteed input pulse detection

Typical programmable controller input devices are unable to detect pulse signals whose ON time is shorter than the scan time or do not occur during I/O refresh periods. The pulse catch function allows these signals to be reliably detected and passed to the sequence program. This function is different from the interrupt input function in that it does not require any special programming. Pulse catch inputs may be used in programs exactly the same as traditional input (X) signals.

CPU with built-in CC-Link network connectivity

L26CPU-(P)BT
L Series CC-Link ready CPUs are compatible with the latest generation of CC-Link devices and support connections with over 1,000 different product types. Without adding a module, these CPUs can perform high-speed communication with a maximum of 128 words $^{* 3}$ between a master station and a local station. CC-Link is the dominate FA network standard in Asia and continues to gain support worldwide.

CC-Link 12

Convenient communication and storage options come as standard

Program, configure, and perform diagnostics on L Series systems using either the USB 2.0 or Ethernet connections. The SD Memory Card slot has many uses including the easy backup and restore of programs and parameters.

USB and Ethernet connections standard

Use the USB 2.0 interface or Ethernet to connect directly at the instillation site. The Ethernet interface supports direct connection with either a cross or straight LAN cable and does not require any configuration of the programmable controller or PC to operate.

Direct connection with straight or cross cable.

Easy connection through hub

All CPUs connected to the same hub can be searched and displayed in a list.
By selecting the access target CPU from the list, it can be connected to even if the IP address is unknown.

Easily connect to BACnet ${ }^{\text {TM }}$ and MODBUS ${ }^{\oplus} / T C P$
Ethernet realizes a high-speed connection, such as communication with external devices.
By using the predefined protocol support function, various devices that require open network protocol support, such as BACnet ${ }^{T \mathrm{M}}$ and MODBUS $\oplus / T C P$ are supported.

Network timestamp

Synchronize systems on an Ethernet network using an SNTP*1 ${ }^{*}$ server. Time synchronization can be achieved to enable simultaneous operations, quality control, or error tracking.
*1: SNTP: Simple Network Time Protocol

Program-less device data transfer
Simple PLC communication function*2
Using the programming tool, a simple parameter setting is all that is needed to transfer device data such as production information with no programming required.
This function makes it possible to easily establish communications not only with L Series, but also Q Series and QnA/A Series controllers.
*2: CPU module whose first five serial number digits are "13042" or later is required.

Item		Description
Communication pattern	Read	Read the data of the specified destination device (transmission source) to the specified device of the host station (transmission destination).
	Write	Write the data of the specified device of the host station (transmission source) to the specified destination device (transmission destination).
	Transfer	Read the data of the specified destination device (transmission source) and write it to another specified destination device (transmission destination).
Communication setting	Execution interval	Set between 10 ms and 65535 ms (1 ms unit)
	Request contact	Data send/receive is executed at the rising edge (OFF to ON) of the specified device ($\mathrm{X}, \mathrm{M}, \mathrm{B}$).
Available devices	Setting No.	Set between 1 and 64.
	Device points	The maximum number that can be set for each setting No. is 512 words. (Maximum points of a word device: 256 points + Maximum points of a bit device: 4096 points) The total of setting No. 1... 64 is maximum 4096 words.

SD memory card special features

Use the SD/SDHC compatible memory card to quickly and easily back-up the CPU programs and parameters.
The backups can then be just as easily restored or used to program other CPUs. The memory card can also be used to hold data captured with the data logging function*3.
*3: For details about the data logging function, please refer to page 9.

Save/load programs directly into the Programmable Controller

Multiple project save/load function*4

Parameters, program files, etc., can be saved/read onto an SD memory card by simply using the onboard display unit, without having to connect to a separate PC. Once saved on the SD memory card, files can be sent via e-mail, for example, when requiring off-site editing of the files.
*4: Supported by CPU module whose first five serial number digits are " 14042 " or later.

Save space in control panels by utilizing the integrated system bus structure. Flexibility in system design is made possible by choosing only the required expansion modules for the application.

Expand L Series systems with no base unit restrictions

L Series modules do not require a base unit. The installation space is not restricted by base size, and the system can be installed with minimal required space.
Furthermore, the addition of modules to the system is not restricted by the number of available base unit slots and costs may be reduced due to the elimination of extension base units.

Installation space is reduced in the control panel

Identify important information easily

Every L Series module has the serial number printed on the front surface of the module to allow viewing even during system operation (modules do not need to be removed).
*: Serial numbers can also be checked using GX Works2.

System expandable according to production equipment scale

Up to three extension blocks connectable to the main block using branch and extension modules. A maximum of 40 modules ${ }^{\star 1}$ caters a wide range of production equipment and line scale.

CPU module ${ }^{\text {2 }}$	Number of extension blocks	Number of connectable modules*3
$\begin{aligned} & \hline \text { LO2SCPU(-P) } \\ & \text { LO2CPU(-P) } \end{aligned}$	Up to 2 blocks	
$\begin{aligned} & \hline \text { L06CPU(-P) } \\ & \text { L26CPU(-P) } \\ & \text { L26CPU-(P)BT } \\ & \hline \end{aligned}$	Up to 3 blocks	Main block: 10 modules Extension block: 11 modules

*1: In the case of L06CPU(-P), L26CPU(-P), and L26CPU-(P)BT.
*2: CPU modules whose first five serial number digits are 13072 or later.
*3: Total number of I/O modules, intelligent function modules, network modules and branch modules.
This does not include the following: Power supply, CPU, display units, extension modules, RS-232 adapter, RS-422/485 adapter, and END covers.

[^1]4: Total number of I/O modules, intelligent function modules and network modules, excluding branch modules.

Well-organized control panel with minimum wiring

Branch module can be strategically placed in a block to minimize wiring space. Extension cables are available in $0.6-, 1.0-$ and $3.0-\mathrm{m}$. The maximum extension length is 3.0 m . .
The extension cable is a one-touch type which can be easily connected and disconnected.
*5: The total length of extension cables should be within 3.0 m .

The modules can be replaced according to the system configuration!

Modules	Installed block	Possible installation position
Branch module	Main block	Right side of CPU module or left side of END cover
	Extension block	Right side of extension module or left side of END cover
Extension module	Main block	Not applicable
	Extension block	Right side of power supply module

Historical trend and live feeds of production

The data logging function*1 embedded in the CPU module allows collected data to be saved in CSV format on an SD memory card simply by using the dedicated setting tool wizard. Additionally, the real-time feature enables live feeds of production data with setup options enabling adjustment of data capture timings.
*1: Not equipped in LO2SCPU(-P).

Easily collect production data

Utilizing the installed SD memory card or a direct live connection to the CPU module, logging data can be easily realized just by simply registering parameters. Logged data can be saved in CSV format and utilized in a number of ways, such as for using on third-party spreadsheet software or as a real-time feed data for analyzing various manufacturing processes. The real-time feature of GX LogViewer also enables live feeds showing device status changes, helping to improve traceability, smooth startup, and debugging.

Logging of control data variances

Data is collected during each scan or within millisecond intervals allowing detection of control deviation even at very high speeds. Therefore, identification of errors can be conducted faster and in more detail.

■ Generic sample data from a PC or external device at 100 ms intervals \square Series data logging function is capable of sampling data at much higher intervals as to detect fast changing values.

Auto logging function

Automatic data logging realized just by inserting the SD memory card into the CPU, which is achieved as the memory card includes the logging configuration file. Instructing data logging remotely is also realized just by sending the configuration file by e-mail and copying onto the SD memory card.

Example: Quickly setup for automatic data logging on-site

Automatically send logging files to FTP server

Data logging files saved on the SD memory card can be sent to the FTP server just by making a simple setting with the logging configuration tool. As the logging server can handle multiple files, management and maintenance tasks can be reduced.

File transfer feature*1

*1: Using a CPU module with the first 5 digits of the serial number "12112" or later

Trigger logging function

Error causes and solutions can be quickly done as only the required data related to the problem is extracted, without having to spend time on filtering large volumes of diagnostic data.

To receive a copy of GX LogViewer, contact your local Mitsubishi Electric representative

Feature rich and easy to use display

Check the system status and make setting changes directly from the display. Error status is clearly identified and troubleshooting and error investigation can be performed all without the need for any connections or engineering software.
*: Not available for LO2SCPU(-P).
L02CPU(-P) L06CPU(-P) L26CPU(-P) L26CPU-(P)BT

Instant error information check
Error history and detailed error information are available directly from the display unit.

Intuitive menu navigation

The menu navigation guide shows the current menu tree location and an arrow to indicate the scroll direction at the top of the display.

Multilingual operation

The display unit language can be selected (Japanese or English).

Choose the desired language

Japanese display

English display

L02CPU

MODE = ERR. RUN = I/OERR. BAT. USER

0	
1	
1	
2	
3	
4	\vdots
5	\vdots
6	\vdots
7	1

An easy-to-use modular design
The L Series module labeling design has been created to ensure clear legibility and identification of information at a glance to avoid mistakes.

Universal design

Adopting a universal font

A high visibility font has been chosen for characters printed on system modules.

Module design

White and red are used to distinguish inputs from outputs respectively to allow for easy identification of terminal connection type.

The characters are thick enough
however the numbers " $3,6,8,9$ " and the alphabet " C " are not clearly distinguishable because the spacing indicated with a red circle is not large enough.

The space indicated with a red circle has been enlarged
The numbers " $3,6,8,9$ " and the
alphabet " C " are clearly distinguishable. Characters are legible even in small print.

Red for output module

Easily identify module status

LEDs display the current status of modules including run and error states.

CPU Modules

Model	General-purpose output	Number of I/O points	Program capacity	Basic operation processing speed (LD instruction)	Peripheral connection ports	Built-in network
LO2SCPU	Sink type	1024 points	20K steps	60 ns	USB/RS-232	-
LO2CPU				40 ns	USB/Ethernet	-
L06CPU		4096 points	60K steps	9.5 ns		-
L26CPU			260 K steps			-
L26CPU-BT						CC-Link
LO2SCPU-P	Source type	1024 points	20K steps	60 ns	USB/RS-232	-
L02CPU-P				40 ns	USB/Ethernet	-
L06CPU-P		4096 points	60K steps	9.5 ns		-
L26CPU-P			260 K steps			-
L26CPU-PBT						CC-Link

CPU packages

■ General specifications

General specifications indicate the environmental specifications in which this product can be installed and operated. Unless otherwise specified, these general specifications apply to all L Series products.

Item	Specification					
Operating ambient temperature	$0 \ldots 55^{\circ} \mathrm{C}$					
Storage ambient temperature	$-25 . .75^{\circ} \mathrm{C}$					
Operating ambient humidity	5...95\%RH, non-condensing					
Storage ambient humidity						
Vibration resistance	Compliant with JIS B 3502 and IEC 61131-2		Frequency	Constant acceleration	Half amplitude	Sweep count
		Under intermittent vibration	$5 . .8 .4 \mathrm{~Hz}$	-	3.5 mm	10 times each in $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ directions
			8.4...150 Hz	9.8 m/ ${ }^{2}$	-	
		Under continuous vibration	$5 . .8 .4 \mathrm{~Hz}$	-	1.75 mm	-
			8.4..150 Hz	$4.9 \mathrm{~m} / \mathrm{s}^{2}$	-	
Shock resistance	Compliant with JIS B 3502 and IEC 61131-2 (147 m/s ${ }^{2}$, 3 times each in directions X, Y, Z)					
Operating atmosphere	No corrosive gases					
Operating altitude*1	$0 . .2000 \mathrm{~m}$					
Installation location	Inside a control panel					
Overvoltage category*2	\leq II					
Pollution degree*3	≤ 2					
Equipment class	Class I					

*1: Do not use or store the programmable controller under pressure higher than the atmospheric pressure of altitude 0 m .
Doing so may cause malfunction. When using the programmable controller under pressure, please consult your local Mitsubishi Electric representative
*2: This indicates the section of the power supply to which the equipment is assumed to be connected between the public electrical power distribution network and the machinery within premises.
Category II applies to equipment for which electrical power is supplied from fixed facilities. The surge voltage withstand level for up to the rated voltage of 300 V is 2500 V .
*3: This index indicates the degree to which conductive material is generated in terms of the environment in which the equipment is used
Pollution level 2 is when only non-conductive pollution occurs. A temporary conductivity caused by condensing must be expected occasionally

■ CPU module specifications

Item			$\begin{aligned} & \text { L02SCPU } \\ & \text { L02SCPU-P } \end{aligned}$	$\begin{aligned} & \text { L02CPU } \\ & \text { L02CPU-P } \end{aligned}$	$\begin{aligned} & \text { L06CPU } \\ & \text { L06CPU-P } \end{aligned}$	$\begin{aligned} & \text { L26CPU } \\ & \text { L26CPU-P } \end{aligned}$	$\begin{aligned} & \text { L26CPU-BT } \\ & \text { L26CPU-PBT } \end{aligned}$
Control method			Stored program cyclic operation				
I/O control mode			Refresh mode (The direct access input/output is available by specifying the direct access input/output (DX, DY).)				
Programming language (sequence control language)			Function block, relay symbol language, MELSAP3 (SFC), MELSAP-L, structured text (ST), logic symbolic language				
Processing speed*4 (sequence instruction)	LD instruction		60 ns	40 ns	9.5 ns		
	MOV instruction		120 ns	80 ns	19 ns		
Constant scan			$0.5 \ldots 2000 \mathrm{~ms}$ (Setting is available in increments of 0.5 ms by parameter.)				
Program capacity			20K steps (80K bytes)		60K steps (240K bytes)	260K steps (1040K bytes)	
Memory capacity	Program memory (drive 0)		80K bytes		240K bytes	1040K bytes	
	Memory card (RAM) (drive 1)		-				
	Memory card (ROM) (drive 2)		Depends on the SD/SDHC memory card used.*5				
	Standard RAM (drive 3)		128K bytes		768 K bytes		
	Standard ROM (drive 4)		512K bytes		1024K bytes	2048K bytes	
Maximum number of files stored	Program memory		64 files		124 files	252 files	
	Memory card (RAM)		-				
	Memory card (ROM)	SD	Root directory: 511 files (maximum) Subdirectory: 65533 files (maximum)				
		SDHC	Root directory: 65534 files (maximum) Subdirectory: 65533 files (maximum)				
	Standard RAM		4 files (each one of the following files: file register file, local device file, sampling trace file, and module error collection file)				
	Standard ROM		128 files		256 files		
Maximum number of intelligent function module parameters		Initial setting	2048 parameters		4096 parameters		
		Refresh	1024 parameters		2048 parameters		
Maximum number of installable modules ${ }^{* 6}$			30		40		
Built-in I/O function			Refer to the built-in I/O specifications \Rightarrow P. 16 to P. 18				
Data logging function			Refer to the buitt-in $1 / \mathrm{O}$ specifications $\boldsymbol{\sim}$ (Pefer to the data logging function specifications \Rightarrow P. 17				
Built-in Ethernet function			Refer to the built-in Ethernet specifications $\boldsymbol{\rightarrow}$ P. 18				
Built-in serial communication function			Refer to the built-in serial communication specifications $\boldsymbol{=}$ P. 18	-			
Built-in CC-Link function			-				Refer to the CC-Link Master/Local Module specifications. \Rightarrow P. 55
Clock function	Displayed information		Year, month, date, hour, minute, second, and day of the week (automatic leap year detection)				
	Accuracy		$\begin{gathered} 0^{\circ} \mathrm{C}:-2.96 \ldots+3.74 \mathrm{~s}(\text { TYP. }+1.42 \mathrm{~s}) \text { per day } \\ \left.25^{\circ} \mathrm{C}:-3.18 \ldots+3.74 \mathrm{~s} \text { (TYP. }+1.50 \mathrm{~s}\right) \text { per day } \\ 55^{\circ} \mathrm{C}:-13.20 \ldots+2.12 \mathrm{~s}(\text { TYP. }-3.54 \mathrm{~s}) \text { per day } \end{gathered}$				
5 V DC internal current consumption	CPU	With display unit	-	1.00 A	1.06 A		1.43 A
		Without display unit	0.75 A	0.94 A	1.00 A		1.37 A
	END cover (Accessory)*7		0.04 A				
Weight	CPU ${ }^{2}$	With display unit	-		0.40 kg		0.50 kg
		Without display unit	0.32 kg		0.37 kg		0.47 kg
	END cover (Accessory)* ${ }^{\text {7 }}$		0.06 kg				

*4: Indexing devices does not delay processing time.
*5: The operation of devices that are not manufactured or recommended as compatible products by Mitsubishi Electric cannot be guaranteed.
*6: The total number of modules that can be installed onto a CPU module. Also refer to the "Module size allocation" for each module.
(Power supply modules, CPU module, Display unit, Extension module, RS-232 adapter, RS-422/485 adapter, END cover,
and END cover with error terminal are not included. Note that only one CPU per system is possible.)
*7: The END cover is included with the CPU module and must be placed on the right end of the last module in the system.

Item		$\begin{aligned} & \text { L02SCPU } \\ & \text { L02SCPU-P } \end{aligned}$	$\begin{aligned} & \text { L02CPU } \\ & \text { LO2CPU-P } \end{aligned}$	$\begin{aligned} & \text { L06CPU } \\ & \text { L06CPU-P } \end{aligned}$	$\begin{aligned} & \text { L26CPU } \\ & \text { L26CPU-P } \end{aligned}$	L26CPU-BT L26CPU-PBT
Number of I/O device points (number of points available on a program)		8192 points (X/YO...X/Y1FFF)				
Number of I/O points		1024 points (X/Y0...X/Y3FF)		4096 points (X/YO...X/YFFF)		
Internal relay (M)		8192 points (M0...M8191) by default (changeable)				
Latch relay (L)		8192 points (LO...L8191) by default (changeable)				
Link relay (B)		8192 points (B0...B1FFF) by default (changeable)				
Timer (T)		2048 points (TO...T2047) by default (changeable) (Low-speed and high-speed timers available) (Low-speed timer: $1 \ldots 1000 \mathrm{~ms}$ (in increments of 1 ms), default: 100 ms) (High-speed timer: $0.1 \ldots 100 \mathrm{~ms}$ (in increments of 0.1 ms), default: 10 ms)				
Retentive timer (ST)		0 point by default (changeable)(Low-speed and high-speed retentive timers available) (Low-speed retentive timer: $1 \ldots .1000 \mathrm{~ms}$ (in increments of 1 ms), default: 100 ms) (High-speed retentive timer: $0.1 \ldots 100 \mathrm{~ms}$ (in increments of 0.1 ms), default: 10 ms)				
Counter (C)		Normal counter 1024 points (C0...C1023) by default (changeable)				
Data register (D)		12288 points (DO...D12287) by default (changeable)				
Extended data register (D)		32768 points (D12288...D45055) by default (changeable)		131072 points (D12288...D143359) by default(changeable)		
Link register (W)		8192 points (W0...W1FFF) by default (changeable)				
Extended link register (W)		0 point by default (changeable)				
Annunciator (F)		2048 points (FO...F2047) by default (changeable)				
Edge relay (V)		2048 points (V0...V2047) by default (changeable)				
Link special relay (SB)		2048 points (SB0...SB7FF) by default (changeable)				
Link special register (SW)		2048 points (SW0...SW7FF) by default (changeable)				
File register	(R)	32768 points (R0...R32767) (Maximum 65536 points are available by switching blocks.)		32768 points (RO...R32767) (Maximum 393216 points are available by switching blocks.)		
	(ZR)	65536 points (ZRO...ZR65535) (Blocks do not need to be switched.)		393216 points (ZR0...ZR393215) (Blocks do not need to be switched.)		
Step relay (S)		8192 points (S0...S8191) by default				
Index register/standard device register (Z)		20 point (Z0...Z19) (maximum)				
Index register (Z) (32-bit index modification of ZR device)		10 point (Z0...Z18) (maximum)(The index register is used as a double-word device.)				
Pointer (P)		4096 points (P0...P4095) (The local pointer range and the common pointer range can be set by parameter.)				
Interrupt pointer (I)		256 points (10...1255) (The fixed scan interval for the system interrupt pointer I28...I31 can be set by parameter.) $0.5 \ldots .1000 \mathrm{~ms}$ (in increments of 0.5 ms) Default I28: $100 \mathrm{~ms}, \mathrm{I} 29: 40 \mathrm{~ms}, \mathrm{I} 30: 20 \mathrm{~ms}, \mathrm{I} 31: 10 \mathrm{~ms}$				
Special relay (SM)		2048 points (SM0...SM2047) (The number of device points is fixed.)				
Special register (SD)		2048 points (SDO...SD2047) (The number of device points is fixed.)				
Function input (FX)		16 points (FXO...FX F) (The number of device points is fixed.)				
Function output (FY)		16 points (FYO...FY F) (The number of device points is fixed.)				
Function register (FD)		5 points (FDO...FD4) (The number of device points is fixed.)				
Intelligent function module device		Device that directly accesses the buffer memory of an intelligent function module Specification format: \square				
Latch (data retention during power failure) range		8192 points (LO...L8191) by default range can be set for the devices, B, F, V, T, ST, C, D, W, and R by parameter.)				

■ CPU built-in I/O function - output specifications (general-purpose output function)

CPU built-in I/O function - positioning function specifications

Item			Description
Number of controlled axes			2
Control unit			pulse
Operation pattern		PTP*1 control	Available
		Path control	Not usable
Number of positioning data			10 data/axis
Positioning control	Positioning control method	PTP*1 control	ABS/INC
		Speed/position switching control	INC
	Positioning range	PTP*1 control	-2147483648... 2147483647 pulses
		Speed/position switching control	0... 2147483647 pulses
	Speed command		0...200k pulses/s
	Acceleration/deceleration system selection		Automatic trapezoid acceleration/deceleration and S-curve acceleration/deceleration
	Acceleration/deceleration time		$0 . .32767 \mathrm{~ms}$
OPR method			6 types
Starting time (1-axis linear control)			Trapezoid acceleration/deceleration (single-axis start): $30 \mu \mathrm{~s} / \mathrm{axis}$ S-curve acceleration/deceleration (single-axis start): $35 \mu \mathrm{~s} /$ axis
Command pulse output	Pulse output method		L02SCPU, L02CPU, L06CPU, L26CPU, L26CPU-BT: 5...24V DC (Sink type) L02SCPU-P, L02CPU-P, L06CPU-P, L26CPU-P, L26CPU-PBT: 5...24V DC (Source type)
	Pulse output mode		4 types
	Maximum output pulse		200k pulses/s
	Maximum connection distance with drive unit		2 m
External input	Zero signal	DC input	24 V DC 6.0 mA (TYP.)
		Differential input	EIA RS-422-A differential line driver level AM26L31 (manufactured by Texas Instruments Incorporated) or equivalent
	Speed/position switching signal		24 V DC 4.1 mA (TYP.)
	Near-point dog signal		
	Upper and lower limit signal		
	Drive unit ready signal		
	Input response time		Zero signal: $10 \mu \mathrm{~s}$ Speed/position switching control, near-point dog signal: $100 \mu \mathrm{~s}$ Upper and lower limit signal, drive unit ready signal: 2 ms
External output	Deviation counter clear signal		L02SCPU, L02CPU, L06CPU, L26CPU, L26CPU-BT: $5 . . .24$ V DC 0.1A (Sink type) L02SCPU-P, L02CPU-P, L06CPU-P, L26CPU-P, L26CPU-PBT: 5... 24 V DC 0.1A (Source type)
	Response time	OFF to ON	$\leq 1 \mu \mathrm{~s}$ (rated load, resistive load)
		ON to OFF	

*1: Abbreviation for "Point to Point." This is a type of position control.

■ CPU built-in I/O function - high-speed counter specifications

	Item		Description
Number of channels			2
Count input signal	Phase		1-phase input (1 multiple/2 multiples) CW/CCW, 2-phase input (1 multiple/2 multiples/4 multiples)
	Signal level	DC input	24 V DC 6.0 mA (TYP.)
		Differential input	EIA Standard RS-422-A Differential line driver level AM26L31 (manufactured by Texas Instruments Incorporated) or equivalent
Counter	Maximum counting speed		200 k pulses/s (for 2 multiples of 1 phase and 4 multiples of 2 phases)
	Counting range		-2147483648... 2147483647
	Model		UP/DOWN preset counter (with ring counter function)
	Minimum count pulse width (Duty ratio 50\%)	1 phase	$5 \mu \mathrm{~s}$
		2 phases	$10 \mu \mathrm{~s}$
	Min. phase differential for 2-phase input		$5 \mu \mathrm{~s}$
External input	Phase Z (preset)	DC input	24 V DC 6.0 mA (TYP.)
		Differential input	EIA Standard RS-422-A Differential line driver level AM26L31 (manufactured by Texas Instruments Incorporated) or equivalent
	Function start		24 V DC 4.1 mA (TYP.)
	Latch		
	Input response time		Phase Z: $10 \mu \mathrm{~s}$ Function start, latch: $100 \mu \mathrm{~s}$
External output	Output format		L02SCPU, L02CPU, L06CPU , L26CPU, L26CPU-BT: Sink type L02SCPU-P, L02CPU-P, L06CPU-P, L26CPU-P, L26CPU-PBT: Source type
	Output voltage/current	Coincidence output No. 1 PWM output	5... 24 V DC/0.25 $\mathrm{A}^{* 1}$
		Coincidence output No. 2	5... 24 V DC/0.1 A
	Response time	OFF to ON	$\leq 1 \mu$ (Rated load, resistance load)
		ON to OFF	
Coincidence output	Comparison range		-2147483648...2147483647
	Comparison result		Set value < Counted value Set value = Counted value Set value > Counted value
	Output points		2 points/channel
PWM output	Output frequency range		DC... 200 kHz
	ON width		$1 \mu \mathrm{~s}$
	Duty ratio		On width can be set in increments of $0.1 \mu \mathrm{~s}$.
	Output points		1 point/channel
Pulse width measurement	Measurement item		Pulse width (On width: $\geq 200 \mu \mathrm{~s}$, Off width: $\geq 200 \mu \mathrm{~s}$)
	Measurement resolution		$5 \mu \mathrm{~s}$
	Measurement points		1 point/channel

*1: For units where the first six digits of the serial number are "120722" or later. The specification for previous serial numbers is 5 to $24 \mathrm{VDC/0.1} \mathrm{~A}$.

■ CPU data logging function specifications

*2: Part of the saved file name, this number is automatically assigned.
*3: Optional data to be appended to the saved file name.

■ CPU built-in Ethernet function specifications

Item			LO2CPU L02CPU-P	L06CPU L06CPU-P	$\begin{aligned} & \text { L26CPU } \\ & \text { L26CPU-P } \end{aligned}$	L26CPU-BT L26CPU-PBT
Transmission specifications	Data transfer speed		100 or 10 Mbps			
	Communication mode		Full-duplex or half-duplex			
	Transmission method		Base band			
	Maximum distance between hub and node		100 m			
	Maximum number of nodes/connection	10BASE-T	Cascade connection: Up to four			
		100BASE-TX		Casca	to two	
	TCP/IP		Total of 16 for socket communications, MELSOFT connections, and MC protocol.*1One for FTP			
connections	UDP/IP					
Connection	10BASE-T		Ethernet cable of category 3 or higher (STP/UTP cable)*3			
cable*2	100BASE-TX		Ethernet cable of category 5 or higher (STP cable)			

*1: Only the QnA-compatible 3E frame may be used.
*2: Standard (straight type) cable. Also, when the CPU is connected directly with a GOT(HMI), a cross cable (category 5 e or less) may be used.
*3: The use of STP (Shielded Twisted Pair) cables is recommended in noisy environments.
■ Communication performance comparison (Comparison of LCPU with built-in Ethernet port and Ethernet interface module)

Function/performance	LCPU with built-in Ethernet port	Ethernet interface module
Communication speed	100 Mbps	100 Mbps
MC protocol communication	$\bullet^{* 4}$	\bullet
Socket communication	$\bullet * 5$	\bullet
Communications using a random access buffer	-	\bullet
E-mail function	-	\bullet
Communications using data link instructions	-	\bullet
File transfer (FTP server) function	$\bullet *$	\bullet
Web function	-	\bullet
MELSOFT products and GOT(HMI) connection	\bullet	\bullet

*4: QnA compatible 3E frame device memory access commands only. Refer to the relevant manual for details.
*5: There are some differences regarding the fixed buffer communications function. Refer to the relevant manual for details.
*6: The "quote cpuchg" command is not supported.
■ CPU built-in serial communication function specifications

- How to read the product code

L 26 \square CPU - P BT - SET

Number	Item	Code	Specification
(1)	Program memory capacity	02	20K steps
		06	60 K steps
		26	260 K steps
Number	Item	Code	Specification
(2)	Communication interface	Blank	Built-in Ethernet model
		S	Built-in RS-232 model
Number	Item	Code	Specification
(3)	Type of module	CPU	CPU module
Number	Item	Code	Specification
(4)	Built-in I/O output format	Blank	Sink type
		P	Source type
Number	Item	Code	Specification
(5)	Built-in CC-Link function	Blank	-
		BT	\bullet
Number	Item	Code	Specification
©	Product set	Blank	-
		SET	Set includes a power supply module (L61P) and display unit (L6DSPU)

Branch/Extension Modules

■ Branch and extension module specifications

Item	L6EXB		L6EXE [Extension module]
5 V DC internal current consumption	0.08 A		0.08 A
Weight	0.12 kg		0.13 kg
■ Extension cable specifications			
Item	LC06E	LC10E	LC30E
Cable length	0.6 m	1.0 m	3.0 m
Weight	0.19 kg	0.23 kg	0.45 kg

Power Supply Modules

■ Power supply module specifications

Item	L61P	L63P	L63SP
Input power supply	100...240 V AC (-15\% ...+10\%)	24 V DC (-35\%...+30\%)	
Input frequency	$50 / 60 \mathrm{~Hz}(-5 \% \ldots+5 \%)$	-	
Input voltage distortion	$\leq 5 \%$	-	
Maximum input apparent power	130 VA	-	
Maximum input power	-	45 W	
Inrush current	$20 \mathrm{~A}, \leq 8 \mathrm{~ms}$	$100 \mathrm{~A}, \leq 1 \mathrm{~ms} \mathrm{(24} \mathrm{~V} \mathrm{DC} \mathrm{input)}$	
Rated output current (5 V DC)	5 A		
Overcurrent protection (5 V DC)	$\geq 5.5 \mathrm{~A}$		
Overvoltage protection	5.5...6.5 V		
Efficiency	$\geq 70 \%$		
Allowable momentary power failure time	$\leq 10 \mathrm{~ms}$	$\leq 10 \mathrm{~ms}$ (24 V DC input)	
Withstand voltage	2300 V AC per minute (altitude 0... 2000 m) Between the combined "line input/LG terminals" and the "FG terminal and output".	510 V AC per minute (altitude 0... 2000 m) Between the combined "line input/LG terminals" and the "FG terminal and output".	-*1
Insulation resistance	$10 \mathrm{M} \Omega$ or higher by 500 V DC insulation resistance tester - Between the combined "line input/LG terminals" and the "FG terminal and output". - The line input and LG terminals. - The FG terminal and output.		-*1
Weight	0.32 kg	0.29 kg	0.19 kg

[^2]RS-232 Adapter

L6ADP-R2
Transmission speed: $115.2 \mathrm{kbps} \quad$ Predefined protocol support function GOT(HMI) connection MELSOFT ${ }^{\text {1 }}$ connection Serial communication function

MODBUS ${ }^{\circledR}$

*1: Please refer to each MELSOFT product manual for details on the supported software

Item	Specification
Maximum data transmission speed	115.2 kbps
5 V DC internal current consumption	0.02 A
Weight	0.10 kg

RS-422/485 Adapter

L6ADP-R4
$\begin{array}{ll}\text { Transmission speed: } 115.2 \mathrm{kbps} & \begin{array}{l}\text { Predefined protocol support function } \\ \text { GOT(HMI) connection }\end{array} \\ \text { Serial Communication function }\end{array}$ MODBUS ${ }^{\circledR}$

RS-422/485 adapter specifications

Item	Specification
Maximum data transmission speed	115.2 kbps
5 V DC internal current consumption	0.15 A
Weight	0.12 kg

END Cover with Error Terminal

Item			Specification
ERR. terminal	Rated switching voltage, current		24 V DC 0.5 A
	Minimum switching load		5 V DC, 1 mA
	Response time	OFF to ON	$\leq 10 \mathrm{~ms}$
		ON to OFF	$\leq 12 \mathrm{~ms}$
	Life	Mechanical	≥ 20 million times
		Electrical	Rated switching voltage/current: 10 million times or more
	Surge suppressor		-
	Fuse		-
Applicable wire size			0.3...2.0 mm² (AWG22...14) (Twisted wire/Solid wire)
External interface			Spring clamp terminal block
5 V DC internal current consumption			0.06 A
Weight			0.11 kg

Display Unit

■ Display Unit specifications

Item	Specification
Number of displayed characters	16 one-byte characters $\times 4$ lines
Displayed characters	- Alphanumeric (two-byte/one-byte character) - Japanese character Katakana (two-byte/one-byte character) - Japanese character Hiragana (two-byte character) - Chinese character (two-byte character) - Symbol (two-byte/one-byte character)
Language	Japanese/English
Backlight	Green (normal), red (error)
Weight	0.03 kg

Input Modules

Output Modules

I/O Combined Modules

Spring clamp terminal block (push-in type): L6TE-18S

The screw terminal block of installed modules can be replaced with a push-in type spring clamp terminal block. This terminal block type helps to reduce the amount of wiring and maintenance time.

■ Push-in type for reduced wiring
Easier to wire just by inserting into the terminal block.

- Simple to confirm signal integrity
Includes dedicated terminals for insertion of a test probe, for example.

■ Input module specifications
AC input module
Item
Number of input points
Rated input voltage, frequency
Input voltage distortion

DC input module

Item	LX40C6	LX41C4	LX42C4
Number of input points	16 points	32 points	64 points
Rated input voltage	24 V DC (ripple rate: $\leq 5 \%$) (allowable voltage range: $20.4 \ldots 28.8 \mathrm{~V} \mathrm{DC)}$		
Rated input current	$6.0 \mathrm{~mA} \mathrm{TYP}. \mathrm{(at} 24 \mathrm{~V}$ DC)	4.0 mA TYP. (at 24 V DC)	
ON voltage/ON current	$\geq 15 \mathrm{VDC} / \geq 4 \mathrm{~mA}$	$\geq 19 \mathrm{~V} \mathrm{DC/} 2 \mathrm{3} \mathrm{mA}$	
OFF voltage/OFF current	$\leq 8 \mathrm{VDC} / \leq 2 \mathrm{~mA}$	$\leq 9 \mathrm{VDC} / \leq 1.7 \mathrm{~mA}$	
Input resistance	$3.8 \mathrm{k} \Omega$	$5.7 \mathrm{k} \Omega$	
Response time ${ }^{\text {O }}$ OFF to ON	$1 \mathrm{~ms}, 5 \mathrm{~ms}, 10 \mathrm{~ms}, 20 \mathrm{~ms}, 70 \mathrm{~ms}$ or less Initial setting is 10 ms .		
ON to OFF			
Common terminal arrangement	16 points/common	32 points/common	
Module size allocation	1		
Number of occupied I/O points	16 points (I/O allocation: input 16 points)	32 points (1/O assignment: input 32 points)	64 points (I/O allocation: input 64 points)
External interface	18-point terminal block	40-pin connector	40-pin connector $\times 2$
5 V DC internal current consumption	90 mA (TYP. all points ON)	100 mA (TYP. all points ON)	120 mA (TYP. all points ON)
Weight	0.15 kg	0.11 kg	0.12 kg

■ Output module specifications
Contact output module

	Item	LY10R2		LY18R
Number of output points		16 points		8 poin
Rated switching voltage, current		24 V DC 2 A (resistive load)/point, $8 \mathrm{~A} /$ common 240 V AC 2 A (COS $\phi=1$)/point, 8 A/common		DC 2 A (resistive load) 0 V AC 2 A (COS $\phi=1$
Minimum switching load		5 V DC 1 mA		
Maximum switching load		264 V AC 125 V DC		
Response time	OFF to ON	$\leq 10 \mathrm{~ms}$		
	ON to OFF	$\leq 12 \mathrm{~ms}$		
Life	Mechanical	≥ 20 million times		
	Electrical	Usage environment		Switching life
		Rated switching voltage/current, rated load		100 thousand times
		200 V AC 1.5 A, 240 V AC 1 A ($\operatorname{COS} \phi=0.7$)		100 thousand times
		200 V AC $0.4 \mathrm{~A}, 240 \mathrm{~V}$ AC $0.3 \mathrm{~A}(\operatorname{COS} \phi=0.7)$		300 thousand times
		200 V AC $1 \mathrm{~A}, 240 \mathrm{~V}$ AC $0.5 \mathrm{~A}(\operatorname{COS} \phi=0.35)$		100 thousand times
		200 V AC $0.3 \mathrm{~A}, 240 \mathrm{~V} \mathrm{AC} 0.15 \mathrm{~A}(\operatorname{COS} \phi=0.35)$		300 thousand times
		24 V DC $1 \mathrm{~A}, 100 \mathrm{~V}$ DC 0.1 A (L/R $=7 \mathrm{~ms}$)		100 thousand times
		24 V DC $0.3 \mathrm{~A}, 100 \mathrm{~V}$ DC $0.03 \mathrm{~A}(\mathrm{~L} / \mathrm{R}=7 \mathrm{~ms})$		300 thousand times
Maximum switching frequency		3600 times/hour		
Surge suppressor		-		
Fuse			(a fuse is recommended to be installed for each external wiring point)	
Common terminal arrangement		16 points/common		No common (all poin
Module size allocation		110		
Number of occupied I/O points		16 points (l/O assignment: 16 output points)		
External interface		18-point terminal block		
5 V DC internal current consumption		460 mA (TYP. all points ON)	260 mA (TYP.all points ON)	
Weight		0.21 kg	0.18 kg	

■ Output module specifications

Triac output

Item		LY20S6	LY28S1A
Number of output points		16 points	8 points
Rated load voltage, frequency		$100 \ldots 240 \mathrm{~V} \mathrm{AC} \mathrm{(+10} \mathrm{\% /-15} \mathrm{\%)} ,50 / 60 \mathrm{~Hz}(\pm 3 \mathrm{~Hz})$	
Maximum load current		$0.6 \mathrm{~A} /$ point, $4.8 \mathrm{~A} / \mathrm{common}$	$1 \mathrm{~A} /$ point, $8 \mathrm{~A} / \mathrm{m}$
Load voltage distortion ratio		$\leq 5 \%$	
Maximum load		264 V AC	
Minimum load voltage/current		$24 \mathrm{~V} \mathrm{AC/100} \mathrm{mA} ,100 \mathrm{~V} \mathrm{AC/25} \mathrm{mA} ,240 \mathrm{~V} \mathrm{AC/25} \mathrm{~mA}$	
Maximum inrush current		$\leq 20 \mathrm{~A} / \mathrm{cycle}$	
Leakage current at OFF		$\leq 3 \mathrm{~mA}($ at $240 \mathrm{~V}, 60 \mathrm{~Hz}), \leq 1.5 \mathrm{~mA}$ (at $120 \mathrm{~V}, 60 \mathrm{~Hz}$)	
Maximum voltage drop at ON		$\leq 1.5 \mathrm{~V}$ (at load current of 0.6 A)	
Response time	OFF to ON	Total of 1 ms and 0.5 cycles or less	
	ON to OFF	Total of 1 ms and 0.5 cycles or less (rated load, resistive load)	
Surge suppressor		CR absorber	
Fuse		None (Attaching a fuse to each external wiring is recommended.)	
Common terminal arrangement		16 points/common	No common (all points
Module size allocation		1	
Number of occupied I/O points		16 points (//O assignment: output 16 points)	
External interface		18-point terminal block	
5 V DC internal current consumption		300 mA (TYP. all points ON)	200 mA (TYP. all po
Weight		0.22 kg	0.19 kg

Transistor output (Sink type)

Item		LY40NT5P	LY41NT1P	LY42NT1P
Number of output points		16 points	32 points	64 points
Rated load voltage		10.2...28.8 V DC		
Maximum load current		0.5 A/point, $5 \mathrm{~A} /$ common	0.1 A/point, $2 \mathrm{~A} /$ common	
Maximum inrush current		Current is limited by the overload protection function.		
Leakage current at OFF		$\leq 0.1 \mathrm{~mA}$		
Maximum voltage drop at ON		0.2 V DC(TYP.) 0.5 A , 0.3 V D(MAX.) 0.5 A	$\begin{aligned} & 0.1 \mathrm{VDC} \text { (TYP.) } 0.1 \mathrm{~A}, \\ & 0.2 \mathrm{VDC} \text { (MAX.) } 0.1 \mathrm{~A} \\ & \hline \end{aligned}$	
Response time	OFF to ON	$\leq 0.5 \mathrm{~ms}$		
	ON to OFF	$\leq 1 \mathrm{~ms}$ (rated load, resistance load)		
Surge suppressor		Zener diode		
Fuse		-		
External power supply	Voltage	$12 / 24 \mathrm{~V} \mathrm{DC} \mathrm{(ripple} \mathrm{rate:} \leq 5 \%$) (allowable voltage range: $10.2 \ldots 28.8 \mathrm{~V} \mathrm{DC})$		
	Current	9 mA (at $24 \mathrm{~V} \mathrm{DC)/common}$	13 mA (at $24 \mathrm{~V} \mathrm{DC)/common}$	9 mA (at $24 \mathrm{~V} \mathrm{DC)/common}$
Common terminal arrangement		16 points/common	32 points/common	
Module size allocation		[1 1		
Number of occupied I/O points		16 points (I/O assignment: 16 output points)	32 points (//O assignment: 32 output points)	64 points (I/O assignment: 64 output points)
Protection function	Overload protection	Limited current when detecting overcurrent (overload protection): 1.5...3.5 A/point. Activated in increments of 1 point.	Limited current when detecting overcurrent (overload protection): $1 \ldots 3 \mathrm{~A} /$ point. Activated in increments of 1 point.	
	Overheat protection	Activated in increments of 1 point		
External interface		18-point terminal block	40-pin connector	40-pin connector $\times 2$
5 V DC internal current consumption		100 mA (TYP. all points ON)	140 mA (TYP. all points ON)	190 mA (TYP. all points ON)
Weight		0.15 kg	0.11 kg	0.12 kg

Transistor output (Source type)

	Item	LY40PT5P	LY41PT1P	LY42PT1P
Number of output points		16 points	32 points	64 points
Rated load voltage		10.2...28.8 V DC		
Maximum load current		0.5 A/point, $5 \mathrm{~A} / \mathrm{common}$	0.1 A/point, $2 \mathrm{~A} / \mathrm{common}$	
Maximum inrush current		Current is limited by the overload protection function.		
Leakage current at OFF		$\leq 0.1 \mathrm{~mA}$		
Maximum voltage drop at ON		0.2 V DC(TYP.) 0.5 A , $0.3 \mathrm{VDC}(\mathrm{MAX})$.	0.1 V DC (TYP.) 0.1 A , 0.2 V DC (MAX.) 0.1 A	
Response time	OFF to ON	$\leq 0.5 \mathrm{~ms}$		
	ON to OFF	$\leq 1 \mathrm{~ms}$ (rated load, resistance load)		
Surge suppressor		Zener diode		
Fuse		-		
External power supply	Voltage	$12 / 24 \mathrm{~V} \mathrm{DC} \mathrm{(ripple} \mathrm{rate:} \leq 5 \%$) (allowable voltage range: $10.2 \ldots 28.8 \mathrm{~V} \mathrm{DC})$		
	Current	17 mA (at 24 V DC)/common	20 mA (at	C)/common
Common terminal arrangement		16 points/common	32 points/common	
Module size allocation		1		
Number of occupied I/O points		16 points (//O assignment: 16 output points)	32 points (I/O assignment: 32 output points)	64 points (I/O assignment: 64 output points)
Protection function	Overload protection	Overcurrent detection: $\geq 1.5 \mathrm{~A} /$ point. Activated in increments of 1 point.	Limited current when detecting overcurrent (overload protection): 1... $3 \mathrm{~A} /$ point. Activated in increments of 1 point.	
	Overheat protection	Activated in increments of 1 point.	Activated in increments of 2 points.	
External interface		18-point terminal block	40-pin connector	40-pin connector $\times 2$
5 V DC internal current consumption		100 mA (TYP. all points ON)	140 mA (TYP. all points ON)	190 mA (TYP. all points ON)
Weight		0.15 kg	0.11 kg	0.12 kg

■ I/O combined module specifications
DC input/transistor output combined module

Item		LH42C4NT1P	LH42C4PT1P
- Input specifications			
Number of input points		32 points	
Rated input voltage		24 V DC (ripple rate: $\leq 5 \%$) (allowable voltage range: $20.4 \ldots 28.8 \mathrm{~V} \mathrm{DC}$)	
Rated input current		4.0 mA TYP. (at 24 V DC)	
Input ON voltage/ON current		$\geq 19 \mathrm{~V} \mathrm{DC/} \geq 3 \mathrm{~mA}$	
Input OFF voltage/OFF current		$\leq 9 \mathrm{VDC} / \leq 1.7 \mathrm{~mA}$	
Input resistance		$5.7 \mathrm{k} \Omega$	
Input response time	OFF to ON	$1 \mathrm{~ms}, 5 \mathrm{~ms}, 10 \mathrm{~ms}, 20 \mathrm{~ms}, 70 \mathrm{~ms}$ or less (Initial setting is 10 ms)	
	ON to OFF		
Input common terminal arrangement		32 points/common	
- Output specifications			
Output format		Transistor output combined module (Sink type)	Transistor output combined module (Source type)
Number of output points		32 points	
Rated load voltage		$10.2 \ldots . .28 .8 \mathrm{~V}$ DC	
Maximum load current		0.1 A/point, $2 \mathrm{~A} / \mathrm{common}$	
Maximum inrush current		Current is limited by the overload protection function.	
Leakage current at OFF		$\leq 0.1 \mathrm{~mA}$	
Maximum voltage drop at ON		0.1 V DC (TYP.) 0.1 A , 0.2 V DC (MAX.) 0.1 A	
Output response time	OFF to ON	$\leq 0.5 \mathrm{~ms}$	
	ON to OFF	$\leq 1 \mathrm{~ms}$ (rated load, resistance load)	
Surge suppressor		Zener diode	
Fuse		-	
Protection function	Overload protection	Limited current when detecting overcurrent (overload protection): $1 \ldots 3 \mathrm{~A} /$ point, activated in increments of 1 point	
	Overheat protection	Activated in increments of 1 point	Activated in increments of 2 points
Output common terminal arrangement		32 points/common	
- Common specifications			
External power supply	Voltage	$12 / 24 \mathrm{~V}$ DC (ripple rate: $\leq 5 \%$) (allowable voltage range: $10.2 \ldots 28.8 \mathrm{~V} \mathrm{DC}$)	
	Current	9 mA (at $24 \mathrm{~V} \mathrm{DC)/common}$	20 mA (at $24 \mathrm{~V} \mathrm{DC)/common}$
Module size allocation		1	
Number of occupied I/O points		32 points (I/O assignment: input/output 32 points)	
External interface		40 -pin connector $\times 2$	
5 V DC internal current consumption		160 mA (TYP. all points ON)	150 mA (TYP. all points ON)
Weight		0.12 kg	

- How to read the product code

Multiple Input (Voltage/Current/Temperature) Module

Analog Input Modules

Analog Output Module

Analog I/O Module

Temperature Input Module

L60RD8

Number of inputs: 8 channels
Input RTD: Pt1000, Pt100 (JIS C 1604-2013), JPt100 (JIS C 1604-1981), PP50 (JIS C 1604-1981),
Ni500 (DIN 43760 1987), Ni120 (DIN 43760 1987), Ni100 (DIN 43760 1987),
Cu100 (GOST 6651-2009, $\alpha=0.00428$), Cu50 (GOST 6651-2009, $\alpha=0.00428$)
Conversion speed: $40 \mathrm{~ms} / \mathrm{ch}$
Resolution: $0.1^{\circ} \mathrm{C}$

■ Multiple/analog/temperature input features

Function			Multiple input (voltage/current/ temperature) module	Analog input module				Analog I/O module	Temperature input module
			L60MD4-G	L60AD4	L60ADVL8	L60ADIL8	L60AD4-2GH	L60AD2DA2	L60RD8
Channel isolation			-	-	-	-	- ${ }^{1}$	-	-
AD conversion method	Sampling processing		\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	-
	Averaging processing	Time average	-	-	-	-	-	-	\bullet
		Count average	-	-	-	-	-	-	-
		Moving average	-	-	\bullet	-	\bullet	-	\bullet
Time lag filter function			-	-	-	-	\bullet	-	-
Digital filtering function			-	-	-	-	\bullet	-	-
Conversion speed switch function			-	\bullet	-	-	-	-	-
Input range extended mode function			-	${ }^{*}{ }^{2}$	-	\bullet	-	\bullet	-
Maximum value/minimum value hold function			\bullet						
Disconnection detection function			\bullet	-	-	-	-	-	\bullet
Input signal error detection function			\bullet	\bullet	-	\bullet	\bullet	\bullet	-
Input signal error detection extension function			-	${ }^{2}{ }^{2}$	\bullet	\bullet	-	-	-
Warning output function	Process alarm		\bullet	\bullet	\bullet	\bullet	\bullet	-	\bullet
	Rate alarm		-	-	-	-	-	-	\bullet
Scaling function			\bullet						
2-point sensor compensation function			-	-	-	-	-	-	\bullet
Shift function			- ${ }^{3}$	${ }^{+2}$	- ${ }^{3}$	- ${ }^{3}$	\bullet	- ${ }^{3}$	\bullet
Digital clipping function			- ${ }^{3}$	\bullet	- ${ }^{3}$	- ${ }^{3}$	\bullet	- ${ }^{3}$	-
Difference conversion function			- ${ }^{3}$	\bullet^{2}	- ${ }^{3}$	- ${ }^{3}$	\bullet	- ${ }^{3}$	-
Logging function			- ${ }^{4}$	\bullet^{2}	- ${ }^{4}$	- ${ }^{4}$	\bullet	\bullet	- ${ }^{4}$
Flow amount integration function			-	\bullet^{2}	-	-	-	-	-
Trigger conversion function			-	-	-	-	\bullet	-	-
Variable arithmetic function			-	-	-	-	-	${ }^{\text {- }}$	-
Variable conversion characteristics function			-	-	-	-	-	${ }^{\text {- }}$	-
Variable conversion characteristics function + variable arithmetic function			-	-	-	-	-	${ }^{*}{ }^{5}$	-

■ Analog output features

Function		Analog output module	Analog I/O module
		L60DA4	L60AD2DA2
Analog output HOLD/CLEAR function		-	\bullet
Scaling function		\bullet	\bullet
Warning output function	Process alarm	-	-
Wave output function		${ }^{*}{ }^{6}$	-
	Wave output step action function	- ${ }^{6}$	\bullet
Variable arithmetic function		-	- ${ }^{\text {5 }}$
Variable conversion characteristics function		-	- ${ }^{5}$
Variable conversion characteristics function + variable arithmetic function		-	- ${ }^{5}$

${ }^{*} 1$: Every two channels are isolated. (CH 1 and CH 2 are isolated from CH 3 and CH 4).
*2: Supported by models whose first five serial number digits are "13041" or later.
*3: Please use function blocks (FB) for the shift function, digital clipping function, and difference conversion function. The function blocks (FB) can be downloaded for free from the MELSOFT Library on the Mitsubishi Electric FA site.
*4: For logging, please use the data logging function of the CPU module.
*5: Supported by models whose first five serial number digits are "17042" or later.
*6: Supported by models whose first five serial number digits are "14041" or later.

Analog/Temperature Control

Easily and finely adjust the system startup time with the shift function

Shift function

Using this function, the set shifting amount to conversion value can be added (shifted) to the digital output value.
When the shifting amount to conversion value is changed, it is reflected to the scaling value (digital operation value) in real time. Therefore, fine adjustment can be easily performed when the system starts.

For L60AD4

Before adjustment		
Input voltage (V)	Digital output value	
0	-10	
5	19990	
Shifting amount to conversion value: +10		
After adjustment	Scaling value Input voltage (V) (digital operation value)	
0	0	
5	20000	

Reduce the time taken for programming

Scaling function

The scaling function converts values directly to easy-to-understand units without requiring any programming. Since a separate conversion program is not required, the number of overall programming steps can be reduced.
Scaling settings example (L60AD4)
Normally an analog input of 4 to 20 mA is converted to a digital value from 0 to 20000 . Using the scaling feature, the same input can result in a digital value of ± 20000.

Input current (mA)	Digital output value	Scaling value
4	0	-20000
8	5000	-10000
12	10000	0
16	15000	10000
20	20000	20000

Digital filtering function

This function eliminates unnecessary frequency elements with simple parameter settings. Select from low pass filter, high pass filter or band pass filter.
Programming steps can be further reduced as extra ladder code is not required to achieve the filter processing.
The filtered A/D conversion program is available at the same time as conversion completion, reducing the overall conversion to filter process time.

First-delay filter function

The first-delay filter function constant outputs a digital value which filters out (smooths) the excessive noise.

Log data for up to $\mathbf{1 0 , 0 0 0}$ points

Logging function

Data is continuously collected at the set cycle and stored in the buffer memory.
Data stored in the buffer memory can be used for debugging, and to periodically confirm data variations.

The logging data can be analyzed with the GX LogViewer.

Item	Description		
	L60AD4	L60AD4-2GH	L60AD2DA2
Collectable points	10000 points/channel		
Collectable data	Digital output value or scaling value (digital operation value)		
Logging cycle*1	$80 \ldots 32767 \mu \mathrm{~s}$ $1 . . .32767 \mathrm{~ms}$ $1 . .3600 \mathrm{~s}$	$40 . . .32767 \mu \mathrm{~s}$ $1 . . .32767 \mathrm{~ms}$ $1 . . .3600$ s	80... $32767 \mu \mathrm{~s}$ 1... 32767 ms $1 . .3600 \mathrm{~s}$
Conversion speed	$80 \mu \mathrm{~s}$, or 1 ms	$40 \mu \mathrm{~s} / 2$ channels	$80 \mu \mathrm{~s}$
Level trigger condition	Above, Below, Pass Through		
Logging points after trigger	1... 10000		
*1: The actual logging cycle is "an integral multiple of the conversion cycle of each A/D conversion method". Ex.) When using the sampling processing: Conversion cycle = conversion speed \times number of channels in use.			

Logging data can be transferred to the CPU device memory while still logging.
Logging and data transmission can be executed simultaneously so the next logging session can be started right away.

Logging for 10,000 points and greater

When logging of 1001-2000 points of data commences, the first 1000 points (1-1000) are stored into the CPU device memory. By storing every 1000 points of data in the CPU, overall logging of total data larger than 1000 points can be logged.

Easily measure part thicknesses!

Difference conversion function

When the difference conversion starts, the scaling value (digital operation value) at that time is determined as the difference conversion reference value. The value acquired by subtracting the difference conversion reference value from the scaling value (digital operation value) is stored as the scaling value (digital operation value) after difference conversion.

Extend the detection method according to applications

Input signal error detection extension function
Using this function, the detection method of the input signal error detection function can be extended. Use this function to detect an input signal error only at the lower or upper limit, or to execute the disconnection detection.

Input range extension function

The input range can be extended. By combining this function with the input signal error detection function, simple disconnection detection can be executed.

Connected devices monitoring alarm

Warning output function

- Process alarm

Outputs an alarm when the digital output value enters a preset alarm range.

Rate alarm
An alarm is generated if the digital output value's variation rate is larger than the rate alarm upper limit value, or if it is smaller than the rate alarm lower limit value.

Noise isolation for smoother system operation

Channel isolation

Each channel is isolated preventing any noise interference between channels resulting in more stable measurements.

A/D variable conversion timing

Trigger conversion function

A/D conversion is processed at the rising edge of the trigger position timing.
This function enables easier use of the converter and enhances the overall program performance.
There are two types of trigger conversion request:
"External trigger conversion request (external input terminal)" or "internal trigger conversion request (buffer memory)".

*1: Carried out in order with combination of channel 1, channel 3 and channel 2, channel 4 .

Item	Description		
Integrated flow amount	Result of integral processing		
Instantaneous flow amount	Instantaneous flow amount value output in analog from flow meter		
$\Delta \mathrm{T}$	Integration cycle (ms)		
T	Conversion value to convert time unit of instantaneous flow amount to ms unit		
	Range of flow meter	Setting value to specify flow amount time unit	T (ms)
	/s	0	1000
	/min	1	60000
	/h	2	3600000
Unit scaling	Unit scaling for integrated flow amount This is used when the value of instantaneous flow amount $\times \Delta \mathrm{T} / \mathrm{T}$ is 0 to 1 .		
		value to specify unit scaling	Unit scaling
		0	1
		1	10
		2	100
		3	1000
		4	10000
Previous amount	Stored integrated flow amount value before integral processing		

Analog/Temperature Control

Realize fast and smooth continuous analog output

Wave output function

The industry's first ${ }^{41}$ waveform output function is included.
This function enables control wave data that is faster than the program control to be directly registered in the D/A converter module and output the data at a set conversion cycle.
Therefore, the analog output value is not affected by the scan time of the CPU module resulting in faster and smoother analog control.
*1: Mitsubishi Electric survey dated April 2012.
Analog output from sequence program
Analog values are output at each scan time

Analog output with waveform output function
Analog values are output at set interval.

The actual waveform and the output waveform deviate.

The output waveform is closer to the actual waveform (less deviation).
(1) Using GX Works2 to create the waveform output data to be analog output

By registering the waveform patterns (multiple), they can be combined freely with the tool.
(2) Save waveform output data into CPU module's file resister (or SD memory card)

Save waveform output data onto SD memory card in situations with no access to a PC
(3) Execute the function block (FB) ${ }^{\star 2}$ and register into analog output module

Register to analog output module (analog input/output module) buffer memory

More flexible calculation and conversion reduce programming time

Conversion by polynomial expressions

The variable arithmetic function enables the analog I/O module to perform polynomial calculations, eliminating the need of such calculations programmed by ladder. With the calculations performed on the analog I/O module side, advanced calculations are possible without being restricted by the scan time.

Graph-form conversion characteristics

The variable conversion characteristics function enables conversion characteristics for analog input, analog output, and analog I/O to be easily set on graphs. This means that conversion characteristics do not need to be programmed by ladder, which leads to reduced programming time.

Item	Description			
Analog input	Conversion characteristics can be easily set for the A-D conversion channels (CH1, CH2).			
Analog output	Conversion characteristics can be easily set for the D-A conversion channels ($\mathrm{CH} 3, \mathrm{CH} 4$).			
Analog I/O	Conversion characteristics for the analog input-output conversion can be easily set in simple steps, eliminating the need of creating ladder programs.			
Previous control method		Control using graph-form conversion characteristics		
Ex.) Analog output module		Ex.) Analog I/O module		
Analog output value (V) 10 [Analog output value (V)		
$-10 \bigsqcup_{-16}$		-10	0	10
	Digital input value			Analog input value (V)
Straight line between the offset and gain values was the conversion characteristics		Conversion characteristics can be easily set		

Conversion by graph-form conversion characteristics plus polynomial expressions

The two functions described above can also be combined; the digital values are first converted according to graph-form conversion characteristics and then by polynomial expressions. These two levels of conversion realize full adjustment of analog values at the time of output rather than adjusting them post-conversion.

Ex.) Obtaining intended analog output using the conversion by graph-form conversion characteristics plus polynomial expressions

One module covering voltage, current, micro-voltage, thermocouples and RTD
For each channel, it is possible to select from voltage, current, micro-voltage, thermocouples or RTD. As a result, dedicated modules required for each type of sensor can now be integrated into a single module.

The multiple input module also supports the Pt50 and JPt100 sensors, which are compatible with the former JIS standards. Modules can be replaced without altering the already existing sensor equipment.

Thermocouple	K, J, T, E, N, R, S, B, U, L, PL II, W5Re/W26Re
RTD	Pt1000, Pt100, JPt100, Pt50

8 input channels with wider input ranges

Single L60RD8 can measure temperatures of up to 8 channels. With the number of supported channels doubled compared to before (L60MD4-G), space and cost savings can be realized. The input range is expanded to meet the DIN standards, GOST standards, and Pt1000 range in addition to Pt100, JPt100, and Pt50, bringing new application possibilities.

RTD	Pt1000, Pt100, JPt100, Pt50, Ni (DIN standards), Cu (GOST standards)

Reduced wiring time with no screw tightening

L60RD8
The module is equipped with a spring clamp terminal block, which does not require screw tightening. This push-in type terminal block does not require any dedicated wiring tool and significantly reduces the installation time.

Easier calibration

 L60RD8Measured temperatures can be easily calibrated towards the actual temperature using the sensor calibration function (shift function, 2-point sensor compensation function).

The measured temperature of $\mathbf{1 0 . 8}$ to $50.7\left({ }^{\circ} \mathrm{C}\right)$ is calibrated to be 10.5 to $50.0\left({ }^{\circ} \mathrm{C}\right)$ by digital calculation. A temperature closer to the one input to RTD is obtained.

■ Multiple input (voltage/current/temperature) module specifications

Item		L60MD4-G								
Number of analog input channels		4 channels								
Analog input	Voltage	$-10 \ldots 10 \mathrm{~V}$ DC (Input resistance value $1 \mathrm{M} \Omega$)								
	Current	$0 . . .20 \mathrm{~mA} \mathrm{DC}$ (Input resistance value 250Ω)								
	micro voltage	-100... 100 mV DC								
	Thermocouple	Available type			K, J, T, E, N, R, S, B, U, L, PL II, W5Re/W26Re					
		Cold junction compensation resistor			Use the included cold junction compensation resistor (CJ)					
	Resistive thermal device	Available type			Pt1000, Pt100, JPt100, Pt50					
		Measurement method			3 -wire system					
Digital output		Voltage, Current, micro voltage			-20480... 20479					
		Resistive thermal device Pt100 (-20...120 ${ }^{\circ} \mathrm{C}$), JPt100 ($-20 \ldots 120^{\circ} \mathrm{C}$)			$-2000 \ldots 20000$: Value rounded off to two decimal places $\times 100$ times					
		Thermocouple, Resistive thermal device (other than the above)			$-4000 \ldots . .32000$: Value rounded off to one decimal place $\times 10$ times					
	When using the scaling function	-32768...32767								
I/O characteristics, resolution		Analog input range		Digital output value		Resolution				
		$0 . . .10 \mathrm{~V}$		0... 20000		$500 \mu \mathrm{~V}$				
		Voltage		0... 20000		$250 \mu \mathrm{~V}$				
			0...20000		$200 \mu \mathrm{~V}$					
		10 V	-20000...20000		$500 \mu \mathrm{~V}$					
		$1 . .5 \mathrm{~V}$ (Extended mode)	-5000...22500		$200 \mu \mathrm{~V}$					
		Current	$0 . . .20 \mathrm{~mA}$	0... 20000		1000 nA				
		mA	800 nA							
		4...20 mA (Extended mode)	-5000... 22500		800 nA					
		micro voltage - $100 \ldots 100 \mathrm{mV}$	-20000...20000		$5 \mu \mathrm{~V}$					
		Thermocouple	$\begin{gathered} \text { B, R, S, N, PL II, W5Re/W26Re: } 0.3^{\circ} \mathrm{C} \\ \text { K, E, J, T, U, L: } 0.1^{\circ} \mathrm{C} \end{gathered}$							
		Resistive thermal device (RTD)	Pt100 (-20...120 ${ }^{\circ} \mathrm{C}$), JPt100 (-20...120 $\left.{ }^{\circ} \mathrm{C}\right): 0.03^{\circ} \mathrm{C}$ Pt100 (-200... $850^{\circ} \mathrm{C}$), JPt100 (-200... $\left.600^{\circ} \mathrm{C}\right)$, Pt1000, Pt50: $0.1^{\circ} \mathrm{C}$							
Accuracy ${ }^{1+2}$			Voltage/Current/ micro voltage			Ambient temperature $25 \pm 5^{\circ} \mathrm{C}$		Maximum value of the measurement rangex $(\pm 0.3 \%$)		
		Ambient temperature $0 \ldots . .55^{\circ} \mathrm{C}$		Maximum value of the measurement rangex $(\pm 0.9 \%$)						
		Thermocouple	Ambient temperature $25 \pm 5^{\circ} \mathrm{C}$		Full scale $\times(\pm 0.15 \%)$					
		Ambient temperature $0 . \ldots 55^{\circ} \mathrm{C}$	Full scale $\times(\pm 0.3 \%)^{3}$							
		Cold junction compensation resistor ${ }^{4}$	Temperature measured value: $-100^{\circ} \mathrm{C}$ or higher		$\leq \pm 1.0^{\circ} \mathrm{C}$					
		Temperature measured value:$-150^{\circ} \mathrm{C} \ldots-100^{\circ} \mathrm{C}$	$\leq \pm 2.0^{\circ} \mathrm{C}$							
		Temperature measured value:$-200^{\circ} \mathrm{C} \ldots-150^{\circ} \mathrm{C}$	$\leq \pm 3.0^{\circ} \mathrm{C}$							
		Resistive thermal device	(Accuracy $)^{5}=($ Conversion accuracy $)+($ Temperature characteristics $) \times$ (Operating ambient temperature change) + (Allowable difference of resistance temperature detector used)							
Conversion speed			$50 \mathrm{~ms} / \mathrm{ch}$							
Output current for temperature detection			Pt100, JPt100, Pt50: 1 mA, Pt1000: 0.2 mA							
Absolute maximum input		Voltage: $\pm 15 \mathrm{~V}$, Current: $30 \mathrm{~mA}^{\text {/6 }}$								
Isolation method		Between I/O terminals and programmable controller power supply: photocoupler isolation Between input channels: transformer isolation								
Module size allocation		1								
Number of occupied I/O points		16 points (//O assignment: 16 points for inteligent)								
External interface		18-point terminal block								
5 V DC internal current consumption		0.49 A								
Weight		0.19 kg								

*1: Except when influenced by noise.
*2: To acquire sufficient accuracy, a warm-up (conduction) for 15 minutes is required.
*3: The accuracy for when the measured temperature of the type W5Re/W26Re thermocouple is $2000^{\circ} \mathrm{C}$ or higher is $\pm 0.5 \%$.
*4: The following table shows the accuracy of the cold junction compensation for when the type "T" thermocouple or type "U" thermocouple is used

Measured temperature	T Thermocouple	U Thermocouple
$0^{\circ} \mathrm{C}$ or higher	$\pm 1.0^{\circ} \mathrm{C}$	
$-100^{\circ} \mathrm{C} \ldots 0^{\circ} \mathrm{C}$	$\pm 2.0^{\circ} \mathrm{C}$	
$-150^{\circ} \mathrm{C} \ldots-100^{\circ} \mathrm{C}$	$\pm 3.0^{\circ} \mathrm{C}$	$\pm 4.0^{\circ} \mathrm{C}$
$-200^{\circ} \mathrm{C} \ldots-150^{\circ} \mathrm{C}$	$\pm 5.0^{\circ} \mathrm{C}$	

*5: The following table shows RTD types and values for each item.

RTD type	Celsius			Fahrenheit		
	Measured temperature range	Conversion accuracy (operating ambient temperature: $25 \pm 5^{\circ} \mathrm{C}$)	Temperature characteristics (for a change of $1^{\circ} \mathrm{C}$ in the operating ambient temperature)	Measured temperature range	Conversion accuracy (operating ambient temperature: $25 \pm 5^{\circ} \mathrm{C}$)	Temperature characteristics (for a change of $1^{\circ} \mathrm{C}$ in the operating ambient temperature)
Pt100	-20...-120 ${ }^{\circ} \mathrm{C}$	$1^{\circ} \mathrm{C}$	$0.1{ }^{\circ} \mathrm{C}$	$0 \ldots 200^{\circ} \mathrm{F}$	$1^{\circ} \mathrm{F}$	$0.1^{\circ} \mathrm{F}$
	-200...850 ${ }^{\circ} \mathrm{C}$	$2^{\circ} \mathrm{C}$	$0.2^{\circ} \mathrm{C}$	$-300 . .1500^{\circ} \mathrm{F}$	$3^{\circ} \mathrm{F}$	$0.3^{\circ} \mathrm{F}$
JPt100	-20...-120 ${ }^{\circ} \mathrm{C}$	$1^{\circ} \mathrm{C}$	$0.1{ }^{\circ} \mathrm{C}$	$0 \ldots 200^{\circ} \mathrm{F}$	$1^{\circ} \mathrm{F}$	$0^{0.1}{ }^{\circ} \mathrm{F}$
	-200...600 ${ }^{\circ} \mathrm{C}$	$2^{\circ} \mathrm{C}$	${ }^{0.2}{ }^{\circ} \mathrm{C}$	$-300 . .1100^{\circ} \mathrm{F}$	$3^{\circ} \mathrm{F}$	$0^{0.3}{ }^{\circ} \mathrm{F}$
Pt1000	$-200 . .850^{\circ} \mathrm{C}$	$2^{\circ} \mathrm{C}$	$0.2^{\circ} \mathrm{C}$	$-300 . .1500^{\circ} \mathrm{F}$	$3^{\circ} \mathrm{F}$	$0^{0.3}{ }^{\circ} \mathrm{F}$
Pt50	-200...650 ${ }^{\circ} \mathrm{C}$	$2^{\circ} \mathrm{C}$	$0.2^{\circ} \mathrm{C}$	-300...1200 ${ }^{\circ} \mathrm{F}$	$3^{\circ} \mathrm{F}$	$0.2^{\circ} \mathrm{F}$

- Allowable difference of Pt100 (JIS C 1604-1997, IEC 751 1983)
- Allowable difference of Pt100, allowable difference of Pt50 (JIS C 1604-1981)

Class	Allowable difference
A	$\pm(0.15+0.002 \mathrm{It})^{\circ} \mathrm{C}$
B	$\pm(0.3+0.005 \mathrm{tt})^{\circ} \mathrm{C}$

Class	Allowable difference
0.15	$\pm(0.15+0.0015 \mathrm{tt})^{\circ} \mathrm{C}$
0.2	$\pm(0.15+0.002 \mathrm{It})^{\circ} \mathrm{C}$
0.5	$\pm(0.3+0.005 \mathrm{It})^{\circ} \mathrm{C}$

The allowable difference of Pt1000 is not provided in the JIS standard, and therefore is not described here. Please contact your Mitsubishi Electric or local sales representative for further details.
*6: A momentary current value which does not cause damage to internal resistors of the module, although the maximum continuous input current is 24 mA

Analog input module specifications

L60AD4

L60ADVL8

*1: Maximum resolution in the user range setting.
*2: Accuracy for the maximum value of the digital output value. Except when influenced by noise.
*3: The default value is $80 \mu \mathrm{~s} /$ channel.
*4: The logging function can be used only in the middle speed ($80 \mu \mathrm{~s} /$ channel) or low speed ($1 \mathrm{~ms} /$ channel)
*4: The logging function can be used only in the middle speed ($80 \mu \mathrm{~s} /$ channel) or low speed
*5: The flow amount integration function can be used only in the low speed ($1 \mathrm{~ms} /$ channel $)$.
*5: The flow amount integration function can be used only in the low speed ($1 \mathrm{~ms} / \mathrm{channel}$).

Dual channel isolation analog input module specifications

Item			L60AD4-2GH				
Number of analog input channels			4 channels				
Analog input	Voltage		$-10 \ldots 10 \mathrm{~V}$ DC (Input resistance value $1 \mathrm{M} \Omega$)				
	Current		$0 \ldots . .20 \mathrm{~mA} \mathrm{DC} \mathrm{(} \mathrm{Input} \mathrm{resistance} \mathrm{value} 250 \Omega$)				
Digital output			-32000...32000				
	When using the scaling function		-32768...32767				
I/O characteristics, resolution				Analog input range	Digital output value	Resolution	
			Voltage	$0 . . .10 \mathrm{~V}$	0...32000	$312.5 \mu \mathrm{~V}$	
			$0 . .5 \mathrm{~V}$	$156 \mu \mathrm{~V}$			
			$1 \ldots .5 \mathrm{~V}$	$125 \mu \mathrm{~V}$			
			-10...10 V	-32000...32000	$312.5 \mu \mathrm{~V}$		
			$1 \ldots . .5 \mathrm{~V}$ (Extended mode)	-8000...32000	$125 \mu \mathrm{~V}$		
			Users range setting (Bipolar: voltage)	-32000...32000	$200 \mu \mathrm{~V}^{*_{1}}$		
			Current	$0 . . .20 \mathrm{~mA}$	0... 32000	625 nA	
			$4 . .20 \mathrm{~mA}$	500 nA			
			$4 \ldots . .20 \mathrm{~mA}$ (Extended mode)	-8000...32000	500 nA		
			Users range setting (Unipolar: Current)	$0 . .32000$	$400 \mathrm{nA}^{*_{1}}$		
Accuracy*2	Reference accuracy**			$\leq \pm 0.05 \%$ (± 16 digit)			
	Temperature coefficient ${ }^{\text {t }}$			$\leq \pm 40.1 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$			
Conversion speed				$40 \mu \mathrm{~s} / 2$ channel			
Absolute maximum input			Voltage: $\pm 15 \mathrm{~V}$, Current: $30 \mathrm{~mA}^{* 5}$				
Isolation method			etween I/O terminals and programmable controller power supply: photocoupler isolation Between analog input channels: dual channel transformer isolation				
Module size allocation			1				
Number of occupied I/O points			16 points (//O assignment: 16 points for intelligent)				
External interface			18-point terminal block				
5 V DC internal current consumption			0.76 A				
Weight			0.20 kg				
External trigger input	Input points		1 point				
	Rated input voltage		24 V DC (+ 20\%/-15\%, ripple ratio: $\leq 5 \%$)				
	Rated input current		6.0 mA TYP . (at 24 V DC)				
	ON voltage/ON current		$\geq 13 \mathrm{~V}, \geq 3 \mathrm{~mA}$				
	OFF voltage/OFF current		$\leq 8 \mathrm{~V}, \leq 1.6 \mathrm{~mA}$				
	Input resistance		$3.9 \mathrm{k} \Omega$				
	Response	OFF to ON	$40 \mu \mathrm{~s}$				
	time	ON to OFF	$40 \mu \mathrm{~s}$				

1: Maximum resolution in the user range setting.
*2: Accuracy for the maximum value of the digital output value. Except when influenced by noise.
*3: Accuracy under the ambient temperature when the offset/gain setting is performed.
*4: Accuracy when the temperature changes $1^{\circ} \mathrm{C}$.
Example: Accuracy when the temperature changes from $25^{\circ} \mathrm{C}$ to $30^{\circ} \mathrm{C}$
$0.05 \%+0.00401 \% /{ }^{\circ} \mathrm{C}$ (temperature coefficient) $\times 5^{\circ} \mathrm{C}$ (temperature change) $=0.070 \%$
*5: A momentary input current value which does not cause damage to internal resistors of the module. The maximum input current value for constant application is 24 mA .
■ Analog output module specifications

Item Number of analog output channels		L60DA4				
Digital input		-20480... 20479				
When using the scaling function		-32768... 32767				
Analog output	Voltage	$-10 \ldots 10 \mathrm{~V}$ DC (External load resistance value $1 \mathrm{k} \Omega . .1 \mathrm{M} \Omega$)				
	Current	$0 . . .20 \mathrm{~mA} \mathrm{DC} \mathrm{(External} \mathrm{load} \mathrm{resistance} \mathrm{value} 0 \Omega \ldots 600 \Omega$)				
I/O characteristics, resolution			og output range	Digital value	Resolution	
		Voltage	$0 . . .5 \mathrm{~V}$	0... 20000	$250 \mu \mathrm{~V}$	
		$1 . . .5 \mathrm{~V}$	$200 \mu \mathrm{~V}$			
		-10... 10 V	-20000... 20000	$500 \mu \mathrm{~V}$		
		Users range setting		$333 \mu \mathrm{~V}^{*}{ }_{6}$		
		Current	$0 . . .20 \mathrm{~mA}$	0... 20000	1000 nA	
		4... 20 mA	800 nA			
		Users range setting	-20000... 20000	$700 \mathrm{nA}{ }^{*}{ }_{6}$		
Accuracy ${ }^{7}$	Ambient temperature $25 \pm 5^{\circ} \mathrm{C}$		$\leq \pm 0.1 \%$			
	Ambient temperature $0 . . .55^{\circ} \mathrm{C}$		$\leq \pm 0.3 \%$			
Conversion speed	Normal output mode	$20 \mu \mathrm{~s} /$ channel				
	Wave output mode	$50 \mu \mathrm{~s} /$ channel $80 \mu \mathrm{~s} /$ channel				
Output short protection		Protected				
Isolation method		tween I/O terminals and programmable controller power supply: photocoupler isolation Between output channels: no isolation Between external power supply and analog output: transformer isolation				
Module size allocation		1				
Number of occupied I/O points		16 points (1/O assignment: 16 points for intelligent)				
External interface		18-point terminal block				
External power supply		24 V DC (+ 20\%/-15\%)				
		Ripple, spike 500 mV P-p or lower				
		Inrush current: $4.3 \mathrm{~A}, 1000 \mu \mathrm{~s}$ or shorter				
		Current consumption: 0.18 A				
5 V DC internal current consumption		0.16 A				
Weight		0.20 kg				
*7: Accuracy for the maximum value of analog output value. Except when influenced by noise. Warm up (power on) the module for 30 minutes to satisfy the accuracy shown in the table.						

■ Analog input/output module specifications

*1: Maximum resolution in the user range setting.

*2: Accuracy for the maximum value of the digital /analog output value. Except when influenced by noise
*3: A momentary current value which does not cause damage to internal resistors of the module, although the maximum continuous input current 24 mA .
*4: When the variable arithmetic function or the variable conversion characteristics function + variable arithmetic function is used, the operation speed for polynomial expressions is $320 \mu \mathrm{~s}$. Since each operation result of two polynomial expressions is output on each D/A conversion channel, D/A conversion is executed at intervals of $320 \mu \mathrm{~s}$ regardless of the number of conversion enabled channels.

- Temperature input module specifications

*1: The following table shows RTD types and values for each item.

RTD type	Celsius			Fahrenheit		
	Measured temperature range	Conversion accuracy		Measured temperature range	Conversion accuracy	
		Operating ambient temperature $25 \pm 5^{\circ} \mathrm{C}$	Operating ambient temperature $0 . .55^{\circ} \mathrm{C}$		Operating ambient temperature $25 \pm 5^{\circ} \mathrm{C}$	Operating ambient temperature $0 \ldots . .55^{\circ} \mathrm{C}$
Pt100	$-20 . . .120^{\circ} \mathrm{C}$	$\pm 0.6^{\circ} \mathrm{C}$	$\pm 2.0^{\circ} \mathrm{C}$	$-4 . . .248^{\circ} \mathrm{F}$	$\pm 1.1^{\circ} \mathrm{F}$	$\pm 3.6{ }^{\circ} \mathrm{F}$
	$-200 . . .850^{\circ} \mathrm{C}$	Specified temperature $\times \pm 0.3 \%$ or $\pm 0.8^{\circ} \mathrm{C}$, whichever is greater	Specified temperature $\times \pm 0.8 \%$ or $\pm 2.7^{\circ} \mathrm{C}$, whichever is greater	-328...1562 ${ }^{\circ} \mathrm{F}$	Specified temperature $x \pm 0.3 \%$ or $\pm 1.5^{\circ} \mathrm{F}$, whichever is greater	Specified temperature $\times \pm 0.8 \%$ or $\pm 4.9^{\circ} \mathrm{F}$, whichever is greater
JPt100	$-20 . .120^{\circ} \mathrm{C}$	$\pm 0.6^{\circ} \mathrm{C}$	$\pm 2.0^{\circ} \mathrm{C}$	$-4 . . .248^{\circ} \mathrm{F}$	$\pm 1.1^{\circ} \mathrm{F}$	$\pm 3.6^{\circ} \mathrm{F}$
	$-200 . .600^{\circ} \mathrm{C}$	Specified temperature $\times \pm 0.3 \%$ or $\pm 0.8^{\circ} \mathrm{C}$, whichever is greater	Specified temperature $\times \pm 0.8 \%$ or $\pm 2.7^{\circ} \mathrm{C}$, whichever is greater	-328...1112 ${ }^{\circ} \mathrm{F}$	Specified temperature $x \pm 0.3 \%$ or $\pm 1.5^{\circ} \mathrm{F}$, whichever is greater	Specified temperature $\times \pm 0.8 \%$ or $\pm 4.9^{\circ} \mathrm{F}$, whichever is greater
Pt1000	$-200 . .850^{\circ} \mathrm{C}$	Specified temperature $\times \pm 0.3 \%$ or $\pm 0.8^{\circ} \mathrm{C}$, whichever is greater	Specified temperature $x \pm 0.8 \%$ or $\pm 2.7^{\circ} \mathrm{C}$, whichever is greater	$-328 . .1562^{\circ} \mathrm{F}$	Specified temperature $x \pm 0.3 \%$ or $\pm 1.5^{\circ} \mathrm{F}$, whichever is greater	Specified temperature $\times \pm 0.8 \%$ or $\pm 4.9^{\circ} \mathrm{F}$, whichever is greater
Pt50	$-200 . .650^{\circ} \mathrm{C}$	Specified temperature $\times \pm 0.3 \%$ or $\pm 0.8^{\circ} \mathrm{C}$, whichever is greater	Specified temperature $x \pm 0.8 \%$ or $\pm 4.1^{\circ} \mathrm{C}$, whichever is greater	$-328 . .1202^{\circ} \mathrm{F}$	Specified temperature $\times \pm 0.3 \%$ or $\pm 1.5^{\circ} \mathrm{F}$, whichever is greater	Specified temperature $\times \pm 0.8 \%$ or $\pm 7.4^{\circ} \mathrm{F}$, whichever is greater
Ni100	$-60 . .250^{\circ} \mathrm{C}$	$\pm 0.6^{\circ} \mathrm{C}$	Specified temperature $\times \pm 0.8 \%$ or $\pm 1.4^{\circ} \mathrm{C}$, whichever is greater	-76...482 ${ }^{\circ} \mathrm{F}$	$\pm 1.1^{\circ} \mathrm{F}$	Specified temperature $\times \pm 0.8 \%$ or $\pm 2.6^{\circ} \mathrm{F}$, whichever is greater
Ni120	$-60 . .250^{\circ} \mathrm{C}$	$\pm 0.6^{\circ} \mathrm{C}$	Specified temperature $x \pm 0.8 \%$ or $\pm 1.4^{\circ} \mathrm{C}$, whichever is greater	-76...482 ${ }^{\circ} \mathrm{F}$	$\pm 1.1{ }^{\circ} \mathrm{F}$	Specified temperature $\times \pm 0.8 \%$ or $\pm 2.6^{\circ} \mathrm{F}$, whichever is greater
Ni500	$-60 . .250^{\circ} \mathrm{C}$	$\pm 0.6^{\circ} \mathrm{C}$	Specified temperature $\times \pm 0.8 \%$ or $\pm 1.4^{\circ} \mathrm{C}$, whichever is greater	$-76 . .482^{\circ} \mathrm{F}$	$\pm 1.1^{\circ} \mathrm{F}$	Specified temperature $\times \pm 0.8 \%$ or $\pm 2.6^{\circ} \mathrm{F}$, whichever is greater
Cu100	$-180 . . .200^{\circ} \mathrm{C}$	$\pm 0.8^{\circ} \mathrm{C}$	$\pm 2.7^{\circ} \mathrm{C}$	-292...392 ${ }^{\circ} \mathrm{F}$	$\pm 1.5^{\circ} \mathrm{F}$	$\pm 4.9^{\circ} \mathrm{F}$
Cu50	$-180 . . .200^{\circ} \mathrm{C}$	$\pm 0.8^{\circ} \mathrm{C}$	$\pm 2.7^{\circ} \mathrm{C}$	-292...392 ${ }^{\circ} \mathrm{F}$	$\pm 1.5^{\circ} \mathrm{F}$	$\pm 4.9^{\circ} \mathrm{F}$

- Allowable difference of Pt100 (JIS C 1604-2013) - Allowable difference of JPt100 and Pt50 (JIS C 1604-1981)

Class	Allowable difference
A	$\pm\left(0.15+0.002 i^{\prime} t\right)^{\circ} \mathrm{C}$
B	$\pm\left(0.3+0.005 t^{\prime}\right)^{\circ} \mathrm{C}$

Class	Allowable difference
0.15	$\pm\left(0.15+0.0015 \text { 't }^{\prime}\right)^{\circ} \mathrm{C}$
0.2	$\pm\left(0.15+0.002 \mathrm{t}^{\circ}\right)^{\circ} \mathrm{C}$
0.5	$\pm\left(0.3+0.005\left(\mathrm{t}^{\prime}\right)^{\circ} \mathrm{C}\right.$

- Allowable difference of Ni100, Ni120, and Ni500 (DIN 43760 1987)

Class	Allowable difference
$-60 \ldots 0^{\circ} \mathrm{C}$	$\pm\left(0.4+0.007 \mathrm{t}^{\prime}\right)^{\circ} \mathrm{C}$
$0 \ldots 250^{\circ} \mathrm{C}$	$\pm\left(0.3+0.0028 \mathrm{t}^{\prime}\right)^{\circ} \mathrm{C}$

- Allowable difference of Cu100 and Cu50 (GOST 6651-2009)

Class	Allowable difference
AA	$\left.\pm\left(0.1+0.0017 \mathrm{t}^{\prime}\right)^{\prime}\right)^{\circ} \mathrm{C}$
A	$\left.\pm\left(0.15+0.002 i^{\prime}\right)^{\prime}\right)^{\circ} \mathrm{C}$
B	$\pm(0.3+0.005 . \mathrm{t} \text { ') })^{\circ} \mathrm{C}$
C	$\pm\left(0.6+0.01 \text { it } t^{\prime}\right)^{\circ} \mathrm{C}$

The allowable difference of Pt1000 is not provided in the JIS standard, and therefore is not described here.
Please contact your Mitsubishi Electric or local sales representative for further details.
*2: Current is output only on channels in which conversion is being performed.
*3: When the standard product (L60MD4-G) is replaced by this module, the resolution of $\mathrm{Pt} 100\left(-20\right.$ to $120^{\circ} \mathrm{C}$) and $\mathrm{JPt100}\left(-20 \mathrm{to} 120^{\circ} \mathrm{C}\right.$) is different.
*4: When a stranded wire is used, attach a bar solderless terminal.

Temperature Control Modules

Function	L60TCTT4	L60TCTT4BW	L60TCRT4	L60TCRT4BW
	Thermocouple input		RTD input	
Standard control	\bullet	-	\bullet	\bullet
Heating-cooling control	\bullet	\bullet	\bullet	\bullet
Self-tuning function	\bullet	-	\bullet	-
Peak current suppression function	\bullet	\bullet	\bullet	\bullet
Simultaneous temperature rise function	\bullet	\bullet	\bullet	\bullet
Selectable sampling cycle	\bullet	\bullet	\bullet	\bullet
Temperature input mode	\bullet	\bullet	\bullet	\bullet
Temperature control mode	\bullet	\bullet	\bullet	\bullet
Heater disconnection detection function	-	\bullet	-	\bullet

Highly stable temperature control

Standard control/heating and cooling control

Prevent overheating and overcooling in devices that require a high level of temperature stability, such as in an extrusion molding machine.
The following control methods can be selected according to the target device.

- Standard control (heating or cooling)
- Heating/cooling control (heating and cooling)
- Mix control (combination of standard control and heating-cooling control)

Example: Standard control (heating only)
The temperature of the object is controlled by adjusting the heater output based on the PID calculations resulting from the temperature sensor input.

Example: Heating-cooling control
(heating and cooling elements controlled simultaneously) Heating is performed when the control object's temperature is lower than the target temperature, and cooling is performed when it is hotter or the humidity needs to be reduced.

Reduce running costs by taking advantage of the energy-saving effect

Peak current control function

The peak current control function reduces the peak current by automatically changing the upper-output limit value for each channel, while dividing the transistor output timing*1. The energy conserved by reducing the peak current, such as a reduction in system power capacity and reduction in contracted power, can help to reduce running costs.
*1: The timing can be split between two to four outputs.

Ensures uniform temperature control

Simultaneous temperature rise function

Ensures uniform temperature control by synchronizing the temperature arrival times from multiple loops.
Perform a uniform temperature rise using two or more control loops without going over temperature or resulting in unexpected thermal expansion.
A "no idling" format increases energy efficiency and reduces running costs.
■ Example: Temperature control of injection molding machine

Example: Wafer heating process for semiconductor manufacturing

The running costs is reduced!

Using this function, it is possible to coordinate the control of two or more loops to reach their target values (SV) at the same time. Control the simultaneous rise in temperature of separate loops by setting a channel group (Max. 2 groups). This is an effective way to control applications where differing target temperature arrival times can result in undesirable temperature differentials.

Support a range of system requirements

Sampling cycle change function
Choose a sampling cycle of $250 \mathrm{~ms} / 4$ channels or $500 \mathrm{~ms} / 4$ channels.

Sampling period: The time it takes to execute a PID operation for all channels (CHn) before beginning the PID operation of the present channel (CHn) again is called a sampling period.

Temperature input mode

This function allows the temperature control module to be used as a standard temperature input module.
Using the switch setting, it is possible to easily change the input mode.

$= \pm 5.2^{\circ} \mathrm{C}$

■ Control mode

Control for each channel is as follows.

Item			L60TCTT4	L60TCTT4BW	L60TCRT4	L60TCRT4BW
Control output			Transistor output			
Number of temperature input channels			4 channels			
Applicable temperature sensors			Thermocouple		Resistive thermal device	
Accuracy*1	Indication accuracy	Ambient temperature: $25 \pm 5^{\circ} \mathrm{C}$	Full scale $\times(\pm 0.3 \%)$			
		Ambient temperature: $0 \ldots . .55^{\circ} \mathrm{C}$	Full scale $\times(\pm 0.7 \%$)			
	Cold junction temperature compensation accuracy: (ambient temperature: $0 . .55^{\circ} \mathrm{C}$)	Temperature process value (PV): $-100^{\circ} \mathrm{C}$ or more	$\leq \pm 1.0^{\circ} \mathrm{C}$		-	
		$\begin{aligned} & \text { Temperature process value (PV): } \\ & -150 \ldots-100^{\circ} \mathrm{C} \end{aligned}$	$\leq \pm 2.0^{\circ} \mathrm{C}$			
		Temperature process value (PV): $-200 \ldots-150^{\circ} \mathrm{C}$	$\leq \pm 3.0^{\circ} \mathrm{C}$			
Sampling cycle			$250 \mathrm{~ms} / 4$ channels $500 \mathrm{~ms} / 4$ channels			
Control output cycle			$0.5 . .100 .0 \mathrm{~s}$			
Input impedance			$1 \mathrm{M} \Omega$			
Input filter			$0 . .100 \mathrm{~s}$ (0: Input filter OFF)			
Sensor correction value setting			-50.00...50.00\%			
Operation at sensor input disconnection			Upscale processing			
Temperature control method			PID ON/OFF pulse or two-position control			
PID constants range		PID constants setting	Can be set by auto tuning.			
		Proportional band (P)	0.0...1000.0\% (0: Two-position control)			
		Integral time (I)	$0 . .3600 \mathrm{~s}$ (set 0 for P control and PD control.)			
		Derivative time (D)	$0 \ldots 3600 \mathrm{~s}$ (set 0 for P control and PI control.)			
Set value (SV) setting range			Within the temperature range set in the thermocouple/platinum resistance thermometer to be used			
Dead band setting range			0.1...10.0\%			
Transistor output		Output signal	ON/OFF pulse			
		Rated load voltage	$10 \ldots 30 \mathrm{~V}$ DC			
		Max. load current	0.1 A/point, 0.4 A/common			
		Max. inrush current	0.4 A 10 ms			
		Leakage current at OFF	$\leq 0.1 \mathrm{~mA}$			
		Max. voltage drop at ON	$1.0 \mathrm{~V} \mathrm{DC} \mathrm{(TYP)} \mathrm{at} 0.1 \mathrm{~A} 2.5 \mathrm{~V} \mathrm{DC} \mathrm{(MAX)} \mathrm{at} 0.1 \mathrm{~A}$			
		Response time	OFF \rightarrow ON: $\leq 2 \mathrm{~ms}, \mathrm{ON} \rightarrow \mathrm{OFF}: \leq 2 \mathrm{~ms}$			
Number of accesses to non-volatile memory			Max. 10^{12} times			
Isolation method			Between input terminal and programmable controller power supply: Transformer isolation Between input channels: Transformer isolation			
Heater disconnection detection specifications		Current sensor	-	- CTL-12-S36-10 (0.0...100.0 A) *2 - CTL-12-S56-10 (0.0...100.0 A)*2 - CTL-6-P-H ($0.00 \ldots 20.00 \mathrm{~A}$) *2	-	- CTL-12-S36-10 (0.0...100.0 A) *2 - CTL-12-S56-10 (0.0...100.0 A) *2 - CTL-6-P-H ($0.00 \ldots 20.00 \mathrm{~A}$) *2
		Input accuracy		Full scale $\times(\pm 1.0 \%)$		Full scale $\times(\pm 1.0 \%)$
		Number of alert delay		3... 255		3... 255
Module size allocation			1	2	1	2
Number of occupied l/O points			16 points (//O assignment: Intelligent 16 points)			
External interface			18-point terminal block	18-point terminal block $\times 2$	18-point terminal block	18-point terminal block $\times 2$
5 V DC internal current consumption			0.30 A	0.33 A	0.31 A	0.35 A
Weight			0.18 kg	0.33 kg	0.18 kg	0.33 kg

*1: Calculate the accuracy in the following method (only when it is not affected by noise).

(Full scale) \times (indication accuracy) + cold junction temperature compensation accuracy
$=\left(400.0^{\circ} \mathrm{C}-\left(-200.0^{\circ} \mathrm{C}\right)\right) \times(\pm 0.007)+\left(\pm 1.0^{\circ} \mathrm{C}\right)$
*2: U.R.D.Co., LTD. For more information, visit http://www.u-rd.com

| Control mode | Contents | Number of controllable loops |
| :--- | :--- | :--- | :--- |
| Standard control | Performs the standard control of four channels. | Standard control 4 loops |
| Heating-cooling control (normal mode) | Performs the heating-cooling control. CH3 and CH4 cannot be used. | Heating-cooling control 2 loops |
| Heating-cooling control (expanded mode) | Performs the heating-cooling control. The number of loops is expanded using an output module and others in
 the system. | Heating-cooling control 4 loops |
| Mix control (normal mode) | Performs the standard control and the heating-cooling control. CH2 cannot be used. | Standard control 2 loops
 Heating-cooling control 1 loop |
| Mix control (expanded mode) | Performs the standard control and the heating-cooling control. The number of loops is expanded using
 an output module and others in the system. | Standard control 2 loops
 Heating-cooling control 2 loops |

Channel	Standard control	Heating-cooling control		Mix control	
		Normal mode	Expanded mode	Normal mode	Expanded mode
CH1	Standard control	Heating-cooling control	Heating-cooling control	Heating-cooling control	Heating-cooling control
CH2	Standard control	Heating-cooling control	Heating-cooling control	$-^{* 3}$	Heating-cooling control
CH3	Standard control	$-^{* 3}$	Heating-cooling control	Standard control	Standard control
CH4	Standard control	$-^{* 3}$	Heating-cooling control ${ }^{* 4}$	Standard control	Standard control

[^3]

Simple Motion Modules

*SSCNET(Servo System Controller NETwork)

Function	LD77MS2	LD77MS4	LD77MS16
Positioning control function	\bullet	\bullet	\bullet
Speed/torque control function	\bullet	\bullet	\bullet
Linear interpolation	2 axes	$2 / 3 / 4$ axes	2 axes
Circular interpolation	2 axes	\bullet	$2 / 3 / 4$ axes
Synchronous control function	External encoder	\bullet	\bullet
	\bullet	\bullet	\bullet
Phase compensation	\bullet	\bullet	\bullet
OPR control function	\bullet	\bullet	\bullet

Positioning Modules

LD75P1

Number of control axes: 1 axis Max. output pulses: 200 K pulses/s Max. output pulses: 200 K pulses/s ositioning data: 600 data/axis
 LD75P2
Number of control axes: 2 axis Nax output pul Max. output pulses: 200 K pulses Positioning data: 600 data/axis
Max. connection distance: 2 m

LD75D2

Number of control axes: 2 axis Max. output pulses: 4M pulse/s Positioning data: 600 data/axis Max. connection distance: 10 m

LD75P4
Number of control axes: 4 axis Max. output pulses: 200 K pulses/s Positioning data: 600 data/axis Max. connection distance: 2 m

Number of control axes: 1 axis Max. output pulses: 4M pulse/s Positioning data: 600 data/axis Max. connection distance: 10 m

Countless applications are possible

A variety of control types including positioning control, speed control, torque control, cam control and synchronous control can be implemented easily with simple parameter settings and a sequence program.

Positioning control

- Support for a multitude of applications thanks to a wide variety of control formats including linear interpolation control (up to 4 axes), 2-axis circular interpolation control, fixed feed control and continuous orbit control.
- Use a sequence program to set the positioning address, speed, etc. for easy automatic operation.
- Quickly implement powerful auxiliary functions such as step operation, target position change, M codes, and the skip function.

Speed control and torque control

- Tension control applications such as winding and rewinding are supported.
- Switch from positioning control, to speed and torque control, and back to positioning control.
Because the present location is tracked even in speed and torque control mode, it is possible to maintain the current absolute position when returning to positioning control.

Synchronous control and cam control

- Cam control may be used alone or combined with synchronous control.

Example application for cam control:

To create a movement path around a workpiece using positioning control, axis 2 waits for axis 1 to complete the move from P 1 to P 2 before it begins moving from P2 to P3. By using cam control, axis 2 does not need to wait for axis 1 to complete its movement and the in position time can be shortened.

Many functions in a compact design

Use a synchronous encoder with synchronous control

- Input pulses from a synchronous encoder can be used to perform synchronous control and cam control.
- The incremental synchronous encoder can be used by using the LD77MS built-in interface. An option unit is not required.
- To further improve the synchronization accuracy, the phase compensation function, designed to compensate for synchronous encoder delays, can be used.

Standard mark detection function

- The built-in mark detection signal interface allows these units to be used in packaging systems for example, without additional option modules.

Automatic cam data generation for rotary cutter

- Complicated cam data for rotary cutters can be automatically generated just by specifying a few parameters like the sheet length and synchronization width.

Perfect synchronous control is easy to achieve

LD77MS \square
Replace mechanical gears, shafts, speed change gears, cams, etc. and generate synchronous control operations using software.

- Complicated programs are unnecessary for synchronous control because it can be implemented easily using parameter settings.
- Start and stop synchronous control for each axis. Use the synchronous control axis and positioning control axis together.
- Convey the travel value of main shaft to the output axis via the clutch.

Synchronous Control Parameter Settings

Cam control made simple

LD77MS \square
Create cam data patterns easily.

- Create cam profiles unrestricted by existing concepts of electronic cam control.
- Change the acceleration, speed, stroke, and jerk while simultaneously seeing how it effects the profile.
- Easily check created cam data by viewing them as thumbnails.
- Import and export cam data in CSV format.

Simplified debugging and commissioning

Digital oscilloscope function

- Collection of data from the simple motion module is synchronized with the operation cycle and waveform displays to facilitate an efficient start up.
- The assistant function explains each step.
- Use the purpose-based probe setting to easily set frequentlyviewed data.
- Sample 16 CH word and 16 CH bit data and display 8 CH words and 8 CH bits in real time.

Monitor and test functions

- Complete the system installation and perform operational checks easily using powerful monitor and test functions.
- Select items to be displayed on the monitor using a wealth of information monitoring options.
- The test function can be used to check basic operations without a sequence program.

Item			LD75P1/LD75D1 ${ }^{\text {¹ }}$	LD75P2/LD75D2*	LD75P4/LD75D4*
Number of control axes			1 axis	2 axes	4 axes
Interpolation function			-	2-axis linear interpolation 2-axis circular interpolation	2-axis/3-axis/4-axis linear interpolation, 2-axis circular interpolation
Control system			PTP (Point To Point) control, path control (both linear and arc can be set), speed control, speed-position switching control, position-speed switching control		
Control unit			mm , inch, degree, pulse		
Positioning data			600 data (positioning data No.1...600) /axis (Can be set with peripheral device or sequence program.)		
Backup			Parameters, positioning data, and block start data can be saved on flash ROM (battery-less backup)		
Positioning control	Positioning control system	PTP*2 control	Increment system, absolute system		
		Speed-position switching control	Increment system, absolute system*3		
		Position-speed switching control	Increment system		
		Path control	Increment system, absolute system		
	Positioning control range	In absolute system	$\begin{gathered} \hline-214748364.8 \ldots 214748364.7(\mu \mathrm{~m}) \\ -21474.83648 \ldots . \ldots 1474.83647 \text { (inch) } \\ 0 \ldots 359.99999 \text { (degree) } \\ -2147483648 \ldots 2147483647 \text { (pulse) } \\ \hline \end{gathered}$		
		In increment system	```-214748364.8...214748364.7 (}\mu\textrm{m} -21474.83648...21474.83647 (inch) -21474.83648...21474.83647 (degree) -2147483648...2147483647 (pulse)```		
		In speed-position switching control (INC mode)/ position-speed switching control	$0 . . .214748364 .7$ ($\mu \mathrm{m}$) $0 . . .21474 .83647$ (inch) $0 . . .21474 .83647$ (degree) 0... 2147483647 (pulse)		
		In speed-position switching control (ABS mode) ${ }^{* 3}$	0...359.99999 (degree)		
	Speed command		$0.01 \ldots .20000000 .00(\mathrm{~mm} / \mathrm{min})$ $0.001 \ldots 2000000.000$ (inch/min) 0.001... 2000000.000 (degree/min) 1... 4000000 (pulse/s)		
	Acceleration/deceleration system selection		Trapezoidal acceleration/deceleration, S-curve acceleration/deceleration		
	Acceleration/deceleration time		1... 8388608 ms Four patterns can be set for each of acceleration time and deceleration time		
	Sudden stop deceleration time		$1 . .8388608 \mathrm{~ms}$		
OPR method			6 types		
Starting time ${ }^{* 4}$			1-axis linear control		1.5 ms
			1-axis speed control		1.5 ms
			2-axis linear interpolation control (Composite speed)		1.5 ms
			2-axis linear control (Reference axis speed)		1.5 ms
			2-axis circular interpolation control		2.0 ms
			2-axis speed control		1.5 ms
			3-axis linear interpolation control (Composite speed)		1.7 ms
			3-axis linear interpolation control (Reference axis speed)		1.7 ms
			3-axis speed control		1.7 ms
			4-axis linear interpolation control		1.8 ms
			4-axis speed control		1.8 ms
Maximum output pulse		LD75P \square	200 kpulse/s		
		LD75D \square	4 Mpulse/s		
Maximum connection distance between drive units		LD75P \square	2 m		
		ts LD75D \square	10 m		
Module size allocation			2		
Number of occupied I/O points			32 points (I/O assignment: Intelligent 32 points)		
External interface			40-pin connector		40-pin connector $\times 2$
5 V DC internal current consumption		LD75P■	0.44 A	0.48 A	0.55 A
		LD75D \square	0.51 A	0.62 A	0.76 A
Weight			0.18 kg		

*1: LD75P \square refers to the open collector output type, and LD75D \square refers to the differential driver output type.
*2: The abbreviation for Point To Point, referring to position control.
*3: In speed-position switching control (ABS mode), "degree" is the only control unit available.
*4: Using the pre-reading start function, the actual starting time can be shortened.

Flexible High-Speed I/O Control Module

*1: Abbreviation of Field Programmable Gate Array. FPGA is an LSI that can be programmed after the manufacture.

Easy FPGA setup with dedicated configuration tool*2

The design process associated with FPGA (HDL programming, logic synthesis, timing analysis) is no longer required, drastically reducing the development time. The configuration tool is also useful to pre-check the product operation, further reducing the startup time.

- Click terminals to connect between blocks
Identify connectable terminals by colors
- Branch connection to multiple terminals
-Multiple signals connectable to one terminal

- Set function block operations by parameters
- Parameters assigned to buffer memories are accessible from CPU programs

- Check the operation with virtual inputs
-Check the simulation result on GX LogViewer

[^4]
Supporting versatile applications

The flexible high-speed I/O control module realizes a wide range of controls including speed measurement, adjusted pulse output, ratio setting/distributed output, PWM control, and cam switch control.

Pulse adjustment

- ON/OFF timings are finely adjusted down to 25 ns by using trigger inputs.
- Fluctuation of ON/OFF operation is minimized down to nanoseconds, enabling highly precise control.

Speed measurement

- In addition to ON and OFF width, measurement in different conditions is possible, such as ON timing difference between sensors.
- The measurement increment of minimum 25 ns realizes highly accurate measurement.

Delay output

- Output timing delays are adjusted for each point, minimizing output variations.

Item			LD40PD01	
			DC	Differential
Number of input points			12 points (5/24 V DC/differential)	
Number of output points			8 points (5...24 V DC, 0.1 A/point)	6 points
Number of interrupts			8 interrupts	
Input response time			$\leq 1 \mu \mathrm{~s}$ (pulse input speed: Max. $200 \mathrm{kpulse} / \mathrm{s}$)	$\leq 1 \mu \mathrm{~s}$ (pulse input speed: Max. 8 Mpulse/s)
Output response time			$\leq 1 \mu \mathrm{~s}$ (pulse input speed: Max. $200 \mathrm{kpulse} / \mathrm{s}$)	$\leq 1 \mu \mathrm{~s}$ (pulse input speed: Max. 8 Mpulse/s)
Main blocks (included in the configuration tool)				
External input block	Logic select		Inverted, not inverted	
	Filter time		General input: $0 \mu \mathrm{~s}, 10 \mu \mathrm{~s}, 50 \mu \mathrm{~s}, 0.1 \mathrm{~ms}, 0.2 \mathrm{~ms}, 0.4 \mathrm{~ms}, 0.6 \mathrm{~ms}, 1 \mathrm{~ms}, 5 \mathrm{~ms}$ Pulse input: $10 \mathrm{kpulse} / \mathrm{s}, 100 \mathrm{kpulse} / \mathrm{s}$, $200 \mathrm{kpulse} / \mathrm{s}$, $500 \mathrm{kpulse} / \mathrm{s}, 1 \mathrm{Mpulse} / \mathrm{s}$, $2 \mathrm{Mpulse} / \mathrm{s}, 4 \mathrm{Mpulse} / \mathrm{s}, 8 \mathrm{Mpulse} / \mathrm{s}$	
Parallel encoder block	Input data type		Pure binary, gray code, BCD	
	Data length		1 bit... 12 bits	
SSI encoder block	Input data type		Pure binary, gray code	
	Data length		1 bit... 32 bits (Data length for single turn, multi-turn, and status can be set.)	
	Transmission speed		$100 \mathrm{kHz}, 200 \mathrm{kHz}, 300 \mathrm{kHz}, 400 \mathrm{kHz}, 500 \mathrm{kHz}, 1.0 \mathrm{MHz}, 1.5 \mathrm{MHz}, 2.0 \mathrm{MHz}$	
Multi function counter block	Counter timer block	Type	Addition, subtraction, linear counter mode, ring counter mode, addition mode, preset counter function, latch counter function, internal clock function	
		Internal clock	$25 \mathrm{~ns}, 50 \mathrm{~ns}, 0.1 \mu \mathrm{~s}, 1 \mu \mathrm{~s}, 10 \mu \mathrm{~s}, 100 \mu \mathrm{~s}, 1 \mathrm{~ms}$	
		Counting range	32-bit signed binary (-2147483648...2147483647), 32-bit unsigned binary ($0 . .4294967295$) 16 -bit signed binary (-32768 ... 32767), 16 -bit unsigned binary ($0 . . .65535$)	
	Compare block	Compare value	Same as the counting range	
		Compare mode	$=,>,<, \geq, \leq,<>$, within the range, outside the range	
	Cam switch block number of steps		Up to 16 steps	
	Set/reset block		Uses the signal input to the Set terminal as a trigger to output the High fixed signal. Uses the signal input to the Reset terminal as a trigger to output the Low fixed signal.	
Logical operation block	Logical o	peration type	AND, OR, XOR	
External output block	Logic select		Inverted, not inverted	
	Delay time		None, $12.5 \mathrm{~ns}, 25 \mathrm{~ns}, 50 \mathrm{~ns}, 0.1 \mu \mathrm{~s}, 1 \mu \mathrm{~s}, 10 \mu \mathrm{~s}, 100 \mu \mathrm{~s}, 1 \mathrm{~ms}$ Can be set up to 64 multiplies.	
Main functions that can be performed with the combination of main blocks			Pulse count, coincidence detection, cam switch, highly-accurate pulse output, PWM output, ratio setting, pulse measurement, electrical interface conversion	
Processing time of the main hardware logic			Logic operation: Min. 87.5 ns, Coincidence output: Min. 137.5 ns, Cam switch: Min. 262.5 ns	
Module size allocation			2	
Number of occupied I/O points			32 points (1/O assignment: Intelligent 32 points)	
External interface			40-pin connector $\times 2$	
5 V DC internal current			0.66 A	
Weight			0.18 kg	

High-Speed Counter Modules

Function	LD62	LD62D
	DC input	Differential input
Linear counter function	\bullet	\bullet
Ring counter function	\bullet	\bullet
Coincidence output function	\bullet	\bullet
Preset function	\bullet	\bullet
Disable count function	\bullet	\bullet
Latch counter function	\bullet	\bullet
Sampling counter function	\bullet	\bullet
Periodic pulse counter function	\bullet	\bullet

Seamless integration of multiple networks

The MELSEC L Series is part of a family of products all interconnected across various levels of automation. Based on the seamless message protocol (SLMP*1), data flows transparently between the sensor level and the management level across multiple industry-standard automation networks. CC-Link IE, Asia's No. 1 industrial network, realizes fast gigabit data transmission speeds, further optimizing the manufacturing cycle. In addition, the SSCNET 3/H high-speed motion control network further enhance the factory-wide connectivity solution.

Seamless communication

Seamless data communication through Ethernet, CC-Link IE Control, CC-Link IE Field, and CC-Link networks allow easy access to information, no matter where it resides on the network. Through this technology, it is possible to "drill down" from the Enterprise or IT layer through multiple networks accessing programming controllers using GX Works2 programming or other related software.
In addition, many devices supporting SLMP*1 such as vision sensors and RFID controllers may be connected to the CC-Link IE Field Network.
*1: SLMP (SeamLess Message Protocol) is a protocol advocated by the CC-Link Partner Association.

CC-Línk IE Control

CC-Link IE Control is a high-reliability distributed control network designed to handle very large data communications (128 K word) over a high-speed (1 Gbps) dual-loop optical cable topology.
*: L Series does not support the CC-Link IE Control Network.

CC-Link

CC-Link is a high-speed and high-reliable deterministic I/O control network which realizes reduced wiring whilst offering multi-vendor compatible products. This open field network is a global standard originating from Japan and Asia.
*: Compatible modules: L26CPU-BT, L26CPU-PBT, LJ61BT11

CC-Link/LT

CC-Link/LT is a wire-saving sensor level network which is designed for use in panels between simple discrete devices. Its wiring system is based on reducing incorrect wiring and is based on CC-Link realizing high-speed and robust noise resistance features
*: Compatible module: LJ61CL12

BACnet ${ }^{\text {™ }}$

This network supports the communication protocol standard BACnet ${ }^{\text {TM }}$ client function. This network is mainly used to monitor and control airconditioning, lighting and fire detection, etc. in building automation system applications.
*: Compatible modules: L02CPU(-P), L06CPU(-P), L26CPU(-P), L26CPU-(P)BT, LJ71E71-100 (client only)

CC-Línk IE Field

CC-Link IE Field is a versatile gigabit Ethernet-based network integrating controller, I/O control, safety control, and motion control in a flexible wiring topology supporting star, ring, and line configurations. *: Compatible modules: LJ71GF11-T2, LJ72GF15-T2

SSCNETIII/H is a dedicated high-speed, high-performance, and highly reliable servo system control network that offers flexible long distance wiring capabilities based on optical fiber cable topology.
*: Compatible modules: LD77MS2, LD77MS4, LD77MS16, LJ72MS15

MODBUS®

L-Series is now supporting the MODBUS ${ }^{\oplus}$ protocol network, realizing easy communication, with various MODBUS ${ }^{\circledR}$ slave devices compatible with Ethernet MODBUS ${ }^{\circledR} / T C P$ or RS-232/422/485 serial communication
*: Module supporting MODBUS ${ }^{\oplus} /$ TCP: LO2CPU(-P), LO6CPU(-P), L26CPU(-P),
L26CPU-(P)BT, LJ71E71-100 (master only)
*: Modules supporting MODBUS ${ }^{\text {: }: ~ L 6 A D P(-R 2 / R 4), ~ L J 71 C 24(-R 2) ~(m a s t e r ~ o n l y) ~}$

CC-Link IE Field Network Master/Local Module

Easy to configure settings

Network parameters are configured using the engineering tool, GX Works2. Only the master station needs to be configured, thereby greatly simplifying the network setup. Updating the system configuration is a breeze.

Flexible network topology
Various network topologies are supported including star, line, star and line combination, and ring. When hubs ${ }^{* 1}$ are used, new equipment can be added and machine layouts can be changed easily.
*1: Hubs cannot be used in a ring configuration.

CC-Link IE Field Network Head Module

CC-Link IE Field | LJ-Link IE Field Intelligent device station |
| :--- |
| Communication speed: 1 Gbps |
| Remote I/O: 2048 points |
| Remote register: 1024 words |
| RAS function |
| $*:$ END cover is included. |

CC-Link IE Field Network remote I/O station

L Series I/O and intelligent function modules can be connected to the remote I/O head module without a dedicated CPU. There are many benefits to using intelligent device stations including reduced CPU and wiring costs, great flexibility in selecting I/O and intelligent function modules, and compact unit size.

Modules compatible with the CC-Link IE Field Network head module

Item	
I/O module	Input, output, I/O combined
Multiple input module	Multiple input (voltage/current/ temperature)
Analog module	Analog input, analog output, analog input/output
Temperature input module	RTD input
Temperature control module	
Simple motion module	
Positioning module	
High-speed counter module	
Network module	CC-Link, CC-Link/LT, serial communication
AnyWireASLINK master module	

RAS (Reliability, Availability, Serviceability) functions

One feature of RAS is to store all remote station error histories in the master station's latched memory. This preserves the error information in one place in the event of power loss and allows for easy troubleshooting. Other RAS features include network event logging, unit error logging, and testing and monitoring capabilities.

Item		LJ72GF15-T2
Transmission speed		1 Gbps
Maximum overall cable distance (Maximum transmission distance)	Line network topology	12000 m (with 1 master and 120 slaves connected)
	Star network topology	Depends on the system configuration
	Ring network topology	12100 m (with 1 master and 120 slaves connected)
Transmission path		Line, star, line and star mixed, or ring topology
Communication method		Deterministic (token passing)
Maximum number of installable modules ${ }^{* 1}$		10
Communication port		CC-Link IE Field Network port x 2
RAS function		Network event logging, unit error logging, testing, monitoring, and error history preservation function
Connection cable*2		Ethernet cable of category 5 e or higher (Double shielded cable) which satisfies 1000 BASE-T standard
5 V DC internal current consumption		1.00 A
Weight		0.23 kg

[^5]
CC-Link Master/Local Module

LJ61BT11

CC-Link master/local station
Max. communication speed: 10 Mbps Remote I/O: 8192 points ${ }^{\text {1 }}$
Remote register: 2048 words ${ }^{1}$
*1:Link points for CC-Link Ver. 2.0 master station

Connect with a huge selection of device types using CC-Link

With such a large selection of CC-Link open network compatible devices, constructing a control system is easy.
Even applications requiring vast amounts of data transmissions can be satisfied because CC-Link Ver.2.0 is supported.

Local stations do not require transmission speed settings

Transmission speed auto-tracking function

When used as a local station, no transmission speed setting is required; the setting is made through automatic detection of the master station setting. The current transmission speed is indicated by an LED on the front surface of the module.

Specifications

CC-Link/LT Master Module

${ }^{*}$: When in 16 -point mode

High speed equipment response
CC-Link/LT has an excellent response time. With 64 stations
■ CC-Link/LT link scan time (using a transmission speed of 2.5 Mbps) and a transmission speed of 2.5 Mbps , the maximum link scan time is just 1.2 ms . According to the transmission distance required, it is possible to select speeds of $2.5 \mathrm{Mbps}, 625 \mathrm{kbps}$, or 156 kbps.

Simple networking that 'just works'

There are no confusing parameters settings to make, and with remote I/O, only the master station needs to set the transmission speed.

Item				LJ61CL12		
Point mode				4-point mode	8-point mode	16-point mode
Control specifications	Maximum link points (the same I/O address used)			256 points (512 points)	512 points (1024 points)	1024 points (2048 points)
	Link points per station (the same I/O address used)			4 points (8 points)	8 points (16 points)	16 points (32 points)
	Link scan time	32 stations connected	Points	128 points	256 points	512 points
			2.5 Mbps	0.7 ms	0.8 ms	1.0 ms
			625 kbps	2.2 ms	2.7 ms	3.8 ms
			156 kbps	8.0 ms	10.0 ms	14.1 ms
		64 stations connected	Points	256 points	512 points	1024 points
			2.5 Mbps	1.2 ms	1.5 ms	2.0 ms
			625 kbps	4.3 ms	5.4 ms	7.4 ms
			156 kbps	15.6 ms	20.0 ms	27.8 ms
Communication specifications	Transmission speed			$2.5 \mathrm{Mbps} / 625 \mathrm{kbps} / 156 \mathrm{kbps}$		
	Communication method			BITR method (Broadcast polling + Interval Timed Response)		
	Network topology			T-branch type		
	Error control system			CRC		
	Number of connectable modules			64		
	Remote station number			1... 64		
	Installation position of master station			End of a trunk line		
	RAS function			Network diagnostics, internal loopback diagnostics, slave station cutoff function, automatic return function		
	Connection cable*2			Dedicated flat cable ($\left.0.75 \mathrm{~mm}^{2} \times 4\right)^{\star 3}$, VCTF cable ${ }^{* 4}$, flexible cable*3		
Module size allocation				1		
Number of occupied I/O points*5				16, 32, 48, 64, 128, 256, 512, or 1024 points (I/O assignment: Intelli.)		
5 V DC internal current consumption				0.16 A		
24 V DC power supply* ${ }^{*}$		Voltage		20.4..28.8 V DC		
		Current consumption		0.03 A		
		Current on	artup	0.07 A		
Weight				0.12 kg		

[^6]
SSCNET III/H Head Module

SSCNET III/H remote station

The SSCNET III/H head module is used to connect the MELSEC-L Series I/O and intelligent function modules to the SSCNET III/H network.
Functioning as the motion controller's remote station, flexible system configuration can be achieved while realizing reduced system wiring and a smaller footprint. In addition, modules installed on the SSCNET III/H head module can be used as a motion controller input/output using cyclic transmission.

■ SSCNET III/H head module compatible modules

Product	
I/O module	Input, output, I/O combined
Multiple input module	Multiple input (voltage/current/ temperature)
Analog module	Analog input, analog output, analog I/O combined
Temperature input module	RTD input
High-speed counter modules	
Compatible motion controller	
Category	Q172DSCPU
Motion CPU \quad Q173DSCPU	
Standalone motion controller	Q170MSCPU

Item		LJ72MS15
Maximum link points per network	RWr, RX	256 bytes
	RWw, RY	256 bytes
Maximum link points per station	RWr, RX	64 bytes
	RWw, RY	64 bytes
Communication speed		150 Mbps
Maximum connectable stations per network ${ }^{* 1}$	Communication cycle: $888 \mu \mathrm{~s}$	4
	Communication cycle: 444 s	2
	Communication cycle: $222 \mu \mathrm{~s}$	1
Maximum station-to-station distance		POF type: $20 \mathrm{~m}, \mathrm{H}-\mathrm{PCF}$ type: 50 m
Connection method		Daisy chain connection (Regenerative relay system with a servo amplifier)
Synchronous method		Synchronization of the control cycle and communication cycle that synchronize with the data transmission of the motion controller
Communication cycle		$222 \mu \mathrm{~s} / 444 \mu \mathrm{~s} / 888 \mu \mathrm{~s}$
Maximum number of installable modules ${ }^{* 2}$		10
Communication port		SSCNET III/H port x2
Connection cable		SSCNET III cable (optical fiber cable)
5 V DC internal current consumption		0.55 A
Weight		0.20 kg
*2: Total number of modules that can be installed onto a SSCNET III/H head module. (Does not include the END cover or power supply module.) Note that only one head module per system is possible.		

Ethernet Interface Module

Modify/collect CPU data from other devices

SLMP (MC protocol) communication ${ }^{\star 1}$

SLMP (Seamless Message Protocol) realizes seamless communication across devices on Ethernet that support the SLMP protocol.
*1: This function can be used with modules with first five serial number digits are " 15042 " or later.

MELSOFT connection

The MELSOFT connection feature realizes the connection to various MELSOFT products including the GX Works2 programming tool. In addition, by using together with the MX Component communication support tool (optional product), custom communications programs can be created, without having to consider any dedicated protocol (send/ receive procedure).

Easily connect to BACnet ${ }^{\text {™ }}$ and MODBUS ${ }^{\circledR} / T C P$

Predefined Protocol support function

Use the GX Works2 Predefined Protocol support function to easily set the required protocol for communicating with other devices.

- Selecting from the communication protocol library Easily communicate with target devices by selecting a
 prepared protocol. The communication protocol library supports the SLMP, MODBUS ${ }^{\otimes} / T C P$ and BACnet ${ }^{\text {TM }}$ client functions.
- Randomly preparing and editing a protocol

By creating a random protocol with the predefined protocol support function, data can be exchanged with a protocol that matches the target device.
\square Specifications

Item			LJ71E71-100	
Standard			100 BASE-TX	10 BASE-T
Transmission specifications	Data transmission speed		100 Mbps	10 Mbps
	Interface		RJ45 (AUTO MDI/MDI-X)	
	Communication mode		Full duplex/Half duplex	Half duplex
	Transmission method		Base band	
	Maximum segment length		100 m (length between a hub and node)*2	
	Maximum number of cascade connections		Cascade connection (maximum of 2 levels)*3	Cascade connection (maximum of 4 levels)*3
Sending/ receiving data storage memory	Number of simultaneous open connections		16 connections (Connections usable on a program)	
	Fixed buffer		1 K word $\times 16$	
	Random access buffer		6 K words $\times 1$	
	E-mail	Attachment	6 K words $\times 1$	
		Main text	960 words $\times 1$	
Module size allocation			1	
Number of occupied I/O points			32 points (I/O assignment: Intelligent 32 points)	
5 V DC internal current consumption			0.60 A	
Weight			0.18 kg	
*2: For the maximum segment length (a length between hubs), consult with the manufacturer of the switching hub used. *3: This applies when a repeater hub is used. For the number of levels that can be constructed when a switching hub is used, consult with the manufacturer of the switching				

Serial Communication Modules

Quick connection using predefined protocols

The predefined protocol enables easy setup of protocols to communicate with external devices using GX Works2. Connections are quickly setup by selecting the target device from the communications protocol library.

Easy to create/edit of predefined protocols

Easily create or edit predefined protocols from within the communications library.
Even if the target device protocol is not listed, it can be added easily to the existing library.

The data can be edited as needed.

Specifications

Item		LJ71C24	LJ71C24-R2	
Interface	CH 1	RS-232 compliant (D-Sub 9P female)	RS-232 compliant (D-Sub 9P female)	
	CH 2	RS-422/485 compliant (2-piece terminal block)	RS-232 compliant (D-Sub 9P female)	
Communication system	Line	Full-duplex/half-duplex communications		
	MC protocol	Half-duplex communications		
	Predefined protocol	Full-duplex/half-duplex communications		
	Nonprocedural protocol			
	Bidirectional protocol			
Synchronization method		Asynchronous method		
Transmission speed		$50 \mathrm{bps} / 300 \mathrm{bps} / 600 \mathrm{bps} / 1200 \mathrm{bps} / 2400 \mathrm{bps} / 4800 \mathrm{bps} / 9600 \mathrm{bps} / 14.4 \mathrm{kbps} /$ $19.2 \mathrm{kbps} / 28.8 \mathrm{kbps} / 38.4 \mathrm{kbps} / 57.6 \mathrm{kbps} / 115.2 \mathrm{kbps} / 230.4 \mathrm{kbps}$ Transmission speed 230.4 kbps is only available for channel 1. Total transmission speed of two interfaces is available up to 230.4 kbps . Total transmission speed of two interfaces is available up to 115.2 kbps when the communication data monitoring function is used.		
Data format	Start bits	1		
	Data bits	7 or 8		
	Parity bits	1 (vertical parity) or none		
	Stop bits	1 or 2		
Error detection	Parity check	All protocols and when ODD/EVEN is selected by parameter.		
	Sum check code	MC protocol/bidirectional protocol selected by parameter. For the predefined protocol, whether or not a sum check code is needed depends on the selected protocol. Nonprocedural protocol selected by user frame.		
Transmission control			RS-232	RS-422/485
		DTR/DSR (ER/DR) control	\bullet	-
		RS/CS control	\bullet	-
		CD signal control	\bullet	-
		DC1/DC3 (Xon/Xoff) control DC2/DC4 control	\bullet	\bullet
		- DTR/DSR signal control and DC code control are selected by the user.		
Module size allocation		1		
Number of occupied I/O points		32 points (//O assignment: Intelligent 32 points)		
5 V DC internal current consumption		0.39 A		
Weight		0.17 kg	0.26 A	

AnyWireASLINK Master Module

LJ51AW12AL
AnyWireASLINK master station
Transmission distance: Max. 200 m
Data I/O: Max. 512 points ${ }^{\star}$
Number of connected stations: Max. 128 modules
*1: 256 input points/256 output points

AnyWireASLINK

Linking the sensor I/O with the programmable controller

The AnyWireASLINK master module links the sensor inputs and outputs to the programmable controller.
The module enables flexible layout of miniature sensors with 512 I/O points.
The sensor power can be supplied to the AnyWireASLINK transmission line (2-wire) for communication, allowing sensors to be added easily.
With the MELSEC-Q/L/F Series, faulty sensors can be detected and the slave module settings can be managed at once by GX Works2 engineering environment, further reducing the engineering time.

Basic configuration

Either the 2-wire type or 4-wire slave device can be selected according to the load current for AnyWireASLINK. In addition to the 2-wire type, a 4-wire type can also be used by supplying the local power.

2-wire type

If the load current is low, 2-wire type (non-insulated) slave devices can be used without an external power supply.

Configuration with 2-wire type (with no local power feed)

4-wire type

The 4-wire type (insulated) slave devices require an external 24 V DC power supply to satisfy large load current applications, for example.

Configuration with 2-wire/4-wire type (with local power feed)

* External power for 4-wire type wiring

Preventing intermittent operation stops

AnyWireASLINK can be used to monitor and save the sensor information within the programmable controller. Parameter settings of the AnyWireASLINK can also be changed via the programmable controller. Perform "preventive maintenance" with this function to prevent intermittent stops before they happen.

Prevent intermittent stops with preventive maintenance!

- Start maintenance early by checking the incoming light amount.
- Change the ON/OFF sensitivity to keep operating up to the maintenance period.

Reducing the setup time, and providing the traceability
AnyWireASLINK enables the set value to be registered at once to multiple sensors via a GOT (HMI) or personal computer. Also, the initial set values can be re-confirmed easily without having to read each sensor individually.

- Register set values to multiple sensors, and automatically read the initial set values.

Item	LJ51AW12AL ${ }^{\text {dB }}$
Transmission clock	27.0 kHz
Maximum transmission distance (overall length)	200 m ${ }^{\text {1 }}$
Transmission method	DC power superimposed total frame cyclic method
Connection style	Bus type (multi-drop method, T-branch method, tree branch method)
Transmission protocol	Dedicated protocol (AnyWireASLINK)
Error control	Checksum, double verification method
Number of connected I/O points	Max. 512 points (256 input points/256 output points)
Number of connected modules	Max. 128 modules (varies according to each slave module's current consumption)
RAS function	Transmission cable break position detection function, transmission cable short-circuit detection function, transmission power drop detection function
Transmission cable (DP, DN)	- UL compatible universal 2-wire cable (VCTF, VCT $1.25 \mathrm{~mm}^{2}, 0.75 \mathrm{~mm}^{2}$, rated temperature $70^{\circ} \mathrm{C}$ or more) - UL compatible universal cable ($1.25 \mathrm{~mm}^{2}, 0.75 \mathrm{~mm}^{2}$, rated temperature $70^{\circ} \mathrm{C}$ or more) - Dedicated flat cable ($1.25 \mathrm{~mm}^{2}, 0.75 \mathrm{~mm}^{2}$, rated temperature $90^{\circ} \mathrm{C}$)
Power cable ($24 \mathrm{~V}, 0 \mathrm{~V}$)	- UL compatible universal 2-wire cable (VCTF, VCT $0.75 \mathrm{~mm}^{2} \ldots .2 .0 \mathrm{~mm}^{2}$, rated temperature $70^{\circ} \mathrm{C}$ or more) - UL compatible universal cable ($0.75 \mathrm{~mm}^{2} . . .2 .0 \mathrm{~mm}^{2}$, rated temperature $70^{\circ} \mathrm{C}$ or more) - Dedicated flat cable ($1.25 \mathrm{~mm}^{2}, 0.75 \mathrm{~mm}^{2}$, rated temperature $90^{\circ} \mathrm{C}$)
Transmission cable supply current*2 ${ }^{\text {2 }}$	Using $1.25 \mathrm{~mm}^{2}$ cable: Max. 2 A Using $0.75 \mathrm{~mm}^{2}$ cable: Max. 1 A
Module size allocation	1
Number of occupied I/O points	32 points (//O assignment: 32 intelligent points)
External power supply	Voltage: 21.6...27.6 V DC (24 V DC -10...+15\%), ripple voltage $0.5 \mathrm{Vp}-\mathrm{p}$ or less Recommended voltage: 26.4 V DC (24 V DC $+10 \%$) Module current consumption: 0.1 A Transmission cable current supply: Max. 2 A*1
5 V DC internal current consumption	Max. 0.2 A
Weight	0.2 kg

*1: With the slave module having an integrated transmission cable (DP, DN) and module, the length of the transmission cable (DP, DN) is included in the overall length.
${ }^{*}$ 2: Refer to the manual for the relation of the overall length, transmission cable (DP, DN) wire diameter and transmission cable current supply. In some slave modules with cables, the wire diameter of the transmission cable (DP, DN) integrated with the module may be $0.75 \mathrm{~mm}^{2}$ or less.

GXWロгksZ

GX Works2 focuses on driving down total cost by including features that speed up commissioning, reduce downtime, improve programming productivity, and provide strong security.

User interface that is "easy to use" by design

The programming tool GX Works2 has been developed from the ground up to be intuitive for all users and allow anyone to begin programming easily. The user interface and other functions provide a comfortable programming environment that enables improvements in design efficiency.

Easily create circuits with few key inputs

The program can be easily modified using the keyboard shortcut [Alt] + [$\leftarrow] /[\rightarrow]$ or [Alt] + [\uparrow]/ [\downarrow] keys.

Simple Motion/ Positioning
 Flexible I/O/ High-Speed Counter
 Network

Efficiently edit lines with keyboard

Ladder rungs can be easily modified just by using the various keyboard shortcut keys, eliminating the need to switch to editing mode.

Input line with $+\infty$ or $+\infty$
Input lines up to coil in batch with $+\infty$$\pm$

How to input a line
Press [Ctrl] $+[\rightarrow]$ or [Ctrl] $+[\downarrow]$
at an empty spot.
Press [Ctrl] $+[\rightarrow]$ or $[\mathrm{Ctrl}]+[\downarrow]$
on top of a line to delete it.

Use function blocks for common operations

Function blocks allow selections of commonly used code to be easily reused and shared among projects. Shared or created function blocks can be added to a program using simple drag and drop operation. Using function blocks effectively results in faster development times with fewer programming mistakes.

Use sample comments to eliminate the need to input comments
Sample comments are provided for the CPU's special relays/registers and the intelligent function module's buffer memory/XY signals. These can be copied into the project's comments thus greatly reducing the time required for entering device comments.

Quickly identify similar devices

Word device comments can be registered per bit with the contents displayed directly on the ladder rung.

Cross referencing interlinked with circuit displays

Relevant devices and labels can be searched within the contents of the program by using the cross reference tool. The results are immediately displayed in the cross reference dialog box conveniently besides the actual program view screen. It is then very easy to check where the relevant device is actually used within the program, just by double clicking on the target device.

The simulation function is now integrated. The program can be executed in a step-by-step method, finding program errors more easily.

Integrating the intelligent function module setting tool (GX Configurator)
The intelligent function module's setting functions have been unified with GX Works2.
Manage the intelligent function module's setting with a GX Works2 project.

Operation status of the entire programmable controller system is clearly displayed. Each module's diagnosis and detailed information are displayed enabling faster troubleshooting.

System monitor and PLC diagnostics

Time-stamped error history list

Simplify troubleshooting with a combined, time-stamped, error history list for the CPU and all expansion modules. The details section provides explanations of error codes and suggested solutions.

Set parameters and monitor the sensor

Parameter settings and monitoring can be performed on the third-party partner products, which support the iQ Sensor Solution (iQSS). Sensor connection and current values can be checked visually, allowing the user to act faster in case of a trouble.

MELSOFT iQ Works Next Generation Integrated Engineering Environment

MELSOFT iQ Works is an integrated software suite consisting of GX Works3, GX Works2, MT Works2, GT Works3, RT ToolBox2 mini and FR Configurator2. The advantages of this powerful integrated software suite are that system design is made much easier with a substantial reduction in repetitious tasks, cutting down on errors while helping to reduce the overall TCO.

Graphical project management

The entire control system is represented using the "Network Configuration", "Module Configuration" and field network configuration windows. System components are easily added using a drag \& drop interface, and the validity of the system can be confirmed using the check function to ensure parameters are configured correctly, the power supply is sufficient, etc. Different programmable controller and GOT (HMI) projects can be grouped together (for example by factory, line, and cell) for central management.

Read project data for multiple devices in a batch
Multiple projects can be read as a block just by having one connection to the programmable controller. If there are multiple devices such as other CPU or GOT(HMI) on the same network as the target master programmable controller, it is possible to upload all projects to each target device without having to individually connect to each device.

Automatically start up the relevant maintenance software with a single click
Just double-click on the corresponding project in the system configuration diagram or workspace tree to automatically startup the software relevant for that device. Maintenance can be efficiently performed without having to know and startup each relevant software manually.

Set up field network slave stations
There's no need to prepare a dedicated tool to check or change the parameter settings of a slave station on-site. The latest version of $\mathrm{i} Q$ Works includes slave station setting utility. Inverter parameters, for example, can be confirmed or changed for speed adjustment directly from the field network configuration window. In addition, error information can be read easily.

CC-Línk IE FField

A list of modules used can be exported as a CSV file from the system configuration diagram.
This is particularly useful when utilizing data for creating a bill of materials (BOM) in Excel ${ }^{\oplus}$, etc.

AnyWireASLINK

Ethernet

Prepare a device from the system configuration diagram with no manual inputs

GX LogViewer
 Visualizing the production process

Within modern manufacturing needs, data collection has become more important for fully optimizing the production process. GX LogViewer is a software tool that realizes visualization of large amounts of production data in a simple to use format.
Utilizing this functionality to identify root error causes and improving the production rate.

Easily display and analyze large amounts of collected logging data

This tool is used when large amounts of data need to be visualized and collected from the MELSEC-Q Series or MELSEC-L Series.
The connection settings and checking of log files are the same as GX Works2 enabling individual connections to each module.

Easily adjust graphs without referring to the setup manual

Arranging graphs

Able to arrange each graph so as not to overlap each other. It is easier to display the graphs as each graph is evenly spaced out.

Overlapping graphs

With this it is possible to overlap each graph over one another. Multiple graphs can be compared enabling easier data analysis and comparison.

Automatically adjusting graphs

Various attributes of the graph are automatically adjusted (max/min values) as to display the upper and lower limit values better.

Easily confirm changes in data with dual cursors

Data changes within a designated time frame can be quickly checked with user-friendly dual cursors (multi-cursors). When the cursors are moved to the point at which changes are to be confirmed, the difference in time and value between those points will appear.

$\bar{\jmath}$

Display data for multiple files within one graph area for easy comparison
Data for multiple files are displayed with the same time units in the same graph area. The display position within a file can be moved easily. This allows the differences of data within multiple files to be confirmed easily.

Quickly jump cursor to designated position

Cursor jump

Confirm data values by quickly moving the cursor to a designated value, time or index position in the trend graph.

Value search
Values are searched, and the cursor jumps to the position where the conditions match.

Time designation
The cursor jumps to the designated time.

Index designation
The cursor jumps to the designated index.

A tool for connecting! Visualizing! For a more seamless sensor control!

iQ Sensor Solution

iQSS connects everything from
general to advanced sensors.

Sensors used on the manufacturing floor are becoming more intelligent and complex, requiring even more maintenance of equipment and the overall management of various configuration setup software. With iQSS, the intelligent sensor solution provided by Mitsubishi Electric, configuration and maintenance of sensors are further simplified with the connectivity to other components such as automation controllers, HMIs, and engineering software even further enhanced reducing the overall TCO*. * Total Cost of Ownership

Ethernet
CC-Línk IE Eield

CC-Link
AnyWireASLINK

Ser

Vision Solution

COGNEX ${ }^{\circledR}$ machine vision system and Mitsubishi Electric FA Devices

 Innovating your production with this integral power.Functioning as devices that "watch" instead of human eyes, COGNEX machine vision systems have continued to reform automation of production lines. Mitsubishi Electric FA devices, such as programmable controllers, lead the future of automation.
The possibilities of vision system solutions, created in the integration of this spirit of innovation, have continued to increase.

L(NA)08230E

For further details, please refer to the "Vision System \& Factory Automation Solution Catalog".

COGNEX DataMan® Barcode Reader Device parther

- Fixed DataMan
- Hand-held DataMan DataMan 8050/8100/8500

DataMan - active in various industries

Automotive components

Aero

Medical
Medical
devices

Electronic Electronic
components

-Fixed DataMan 50/60

- Unmatched read rate performance with Hotbars ${ }^{\text {TM }}$
- Proprietary Hotbars ${ }^{\text {TM }}$ technology

- Solid state design with no moving parts

DataMan 50

- Easy setup with three position adjustable lens and integrated lighting aimer
- IP65-rated housing (DataMan 50)
- Supports SLMP (DataMan 60)

DataMan 60

-Fixed DataMan 300 Series

- Unprecedented read rate with Hotbars ${ }^{\text {TM }}$

Reads the most difficult-to-read 2-D Direct Part Mark (DPM) codes
Liquid lens with automatic variable focus

- Intelligent tuning
- Integrated lighting module

Supports SLMP

Programmable controller

-Hand-held DataMan 8050/8100/8500 Series

UltraLight®: Two types of lighting enable optimum reading*1

- Newly developed body enhances sturdiness
- Standard automatic focus adjustment function*2
- Supports SLMP
- Cordless capability
(up to 30 m communication range)
- Unprecedented read rate with Hotbars ${ }^{\top}{ }^{\top}$
*1: DataMan 8500

CPU modules

L02SCPU, L02SCPU-P

L02CPU, L02CPU-P, L06CPU, L06CPU-P, L26CPU, L26CPU-P

L26CPU-BT, L26CPU-PBT

Display unit
L6DSPU

RS-232 adapter

L6ADP-R2

RS-422/485 adapter

L6ADP-R4

END cover with error terminal

L6EC-ET

Power supply modules

L61P, L63P
L63SP

Branch module

L6EXB

Extension cable

LC06E, LC10E, LC30E

Input/Output///O combined modules
LX10, LX28, LX40C6, LY10R2, LY18R2A
LY20S6, LY28S1A, LY40NT5P, LY40PT5P

LX42C4, LY42NT1P, LY42PT1P
LH42C4NT1P, LH42C4PT1P

LG69
L6TE-18S

Multiple input (voltage/current/temperature)/Analog input/output//O module

L60MD4-G, L60AD4, L60DA4, L60ADVL8, L60ADIL8, L60AD4-2GH, L60AD2DA2

Temperature input module

L60RD8

L60TCTT4, L60TCRT4

L60TCTT4BW, L60TCRT4BW

Simple motion modules

LD77MS2, LD77MS4, LD77MS16

Positioning modules

LD75P1, LD75P2

LD75P4

LD75D1, LD75D2

LD75D4

Flexible high-speed I/O control module
LD40PD01

High-speed counter module
LD62, LD62D

CC-Link IE Field Network master/local module

LJ71GF11-T2

CC-Link IE Field Network head module

LJ72GF15-T2

CC-Link master/local module

LJ61BT11

CC-Link/LT master module

LJ61CL12

SSCNET III/H head module

LJ72MS15

Ethernet interface module

LJ71E71-100

Serial communication modules

LJ71C24
LJ71C24-R2

AnyWireASLINK master module

LJ51AW12AL DB

Extensive global support coverage providing expert help whenever needed

■ Global FA centers

China

(1) Shanghai FA Center

MITSUBISHI ELECTRIC AUTOMATION (CHINA) LTD.
No. 1386 Hongqiao Road, Mitsubishi Electric Automation
Center, Shanghai, China
Tel: +86-21-2322-3030 / Fax: +86-21-2322-3000
(2) Beijing FA Center

MITSUBISHI ELECTRIC AUTOMATION (CHINA)

LTD. Beijing Branch

Unit 901, 9F, Office Tower 1, Henderson Centre, 18 Jianguomennei Avenue, Dongcheng District, Beijing, China
Tel: +86-10-6518-8830 / Fax: +86-10-6518-2938
(3) Tianjin FA Center

MITSUBISHI ELECTRIC AUTOMATION (CHINA)

LTD. Tianjin Branch

Room 2003 City Tower, No.35, Youyi Road, Hexi District,
Tianjin, China
Tel: +86-22-2813-1015 / Fax: +86-22-2813-1017
(4) Guangzhou FA Center

MITSUBISHI ELECTRIC AUTOMATION (CHINA) LTD. Guangzhou Branch
Room 1609, North Tower, The Hub Center, No. 1068,
Xingang East Road, Haizhu District, Guangzhou, China
Tel: +86-20-8923-6730 / Fax: +86-20-8923-6715

Taiwan

(5) Taichung FA Center

MITSUBISHI ELECTRIC TAIWAN CO.,LTD.
No.8-1, Industrial 16th Road, Taichung Industrial Park, Taichung City 40768, Taiwan, R.O.C.
Tel: +886-4-2359-0688 / Fax: +886-4-2359-0689
6 Taipei FA Center
SETSUYO ENTERPRISE CO., LTD.
3F, No.105, Wugong 3rd Road, Wugu District, New
Taipei City 24889, Taiwan, R.O.C.
Tel: +886-2-2299-9917 / Fax: +886-2-2299-9963

Korea

(7) Korea FA Center

MITSUBISHI ELECTRIC AUTOMATION KOREA

CO., LTD.

7F-9F, Gangseo Hangang Xi-tower A, 401, Yangcheon-ro, Gangseo-Gu, Seoul 157-801, Korea
Tel: +82-2-3660-9605 / Fax: +82-2-3663-0475

Thailand

8 Thailand FA Center
MITSUBISHI ELECTRIC FACTORY AUTOMATION (THAILAND) CO., LTD.
12th Floor, SV.City Building, Office Tower 1, No. 896/19 and 20 Rama 3 Road, Kwaeng Bangpongpang, Khet Yannawa, Bangkok 10120, Thailand Tel: +66-2682-6522 / Fax: +66-2682-6020

ASEAN

(9) ASEAN FA Center

MITSUBISHI ELECTRIC ASIA PTE. LTD.
307, Alexandra Road, Mitsubishi Electric Building, Singapore 159943
Tel: +65-6470-2480 / Fax: +65-6476-7439

Indonesia

(10 Indonesia FA Center PT. MITSUBISHI ELECTRIC INDONESIA Cikarang Office
J. Kenari Raya Blok G2-07A Delta Silicon 5, Lippo Cikarang-Bekasi 17550, Indonesia
Tel: +62-21-2961-7797 / Fax: +62-21-2961-7794

Vietnam

(1) Hanoi FA Center

MITSUBISHI ELECTRIC VIETNAM COMPANY

LIMITED Hanoi Branch

6-Floor, Detech Tower, 8 Ton That Thuyet Street, My Dinh 2 Ward, Nam Tu Liem District, Hanoi, Vietnam Tel: +84-4-3937-8075 / Fax: +84-4-3937-8076
(12) Ho Chi Minh FA Center

MITSUBISHI ELECTRIC VIETNAM COMPANY

 LIMITEDUnit 01-04, 10th Floor, Vincom Center, 72 Le Thanh Ton Street, District 1, Ho Chi Minh City, Vietnam Tel: +84-8-3910-5945 / Fax: +84-8-3910-5947

India

(13) India Pune FA Center MITSUBISHI ELECTRIC INDIA PVT. LTD.

Pune Branch

Emerald House, EL-3, J Block, M.I.D.C Bhosari, Pune411026, Maharashtra, India
Tel: +91-20-2710-2000 / Fax: +91-20-2710-2100
(14) India Gurgaon FA Center

MITSUBISHI ELECTRIC INDIA PVT. LTD.

Gurgaon Head Office

nd Floor, Tower A \& B, Cyber Greens, DLF Cyber City, LF Phase-III, Gurgaon-122002 Haryana, India Tel: +91-124-463-0300 / Fax: +91-124-463-0399
(15) India Bangalore FA Center MITSUBISHI ELECTRIC INDIA PVT. LTD.

Bangalore Branch

Prestige Emerald, 6th Floor, Municipal No. 2, Madras Bank Road (Lavelle Road), Bangalore-560001, Karnataka, India Tel: +91-80-4020-1600 / Fax: +91-80-4020-1699
(16) India Chennai FA Center

MITSUBISHI ELECTRIC INDIA PVT. LTD.

Chennai Branch

"Citilights Corporate Centre" No.1, Vivekananda Road, Srinivasa Nagar, Chetpet, Chennai-600031, Tamil Nadu, ndia
Tel: +91-44-4554-8772 / Fax: +91-44-4554-8773
(17) India Ahmedabad FA Center

MITSUBISHI ELECTRIC INDIA PVT. LTD. Ahmedabad Branch

B/4, 3rd Floor, Safal Profitaire, Corporate Road,
Prahaladnagar, Satellite, Ahmedabad, Gujarat-380015, India Tel: +91-79-6512-0063

America

18 North America FA Center
MITSUBISHI ELECTRIC AUTOMATION, INC.
500 Corporate Woods Parkway, Vernon Hills, IL 60061 U.S.A.

Tel: +1-847-478-2469 / Fax: +1-847-478-2253

Mexico

(19) Mexico FA Center

MITSUBISHI ELECTRIC AUTOMATION, INC.

Mexico Branch

Mariano Escobedo \#69, Col. Zona Industrial,
lalnepantla Edo, C.P.54030, Mexico
Tel: +52-55-3067-751

Brazil

20 Brazil FA Center MITSUBISHI ELECTRIC DO BRASIL COMÉRCIO E SERVIÇOS LTDA.
Rua Jussara, 1750-Bloco B Anexo, Jardim Santa
Cecilia, CEP 06465-070, Barueri-SP, Brasil
Tel: +55-11-4689-3000 / Fax: +55-11-4689-3016
(21) Brazil Boituva FA Center

MELCO CNC DO BRASIL COMÉRCIO E SERVIÇOS S.A.
Acesso Jose Sartorelli, KM 2.1 CEP 18550-000 BoituvaSP, Brasil
Tel: +55-15-3363-9900 / Fax: +55-15-3363-9911

Europe

(22) Europe FA Center

MITSUBISHI ELECTRIC EUROPE B.V. Polish Branch
ul. Krakowska 50, 32-083 Balice, Poland
Tel: +48-12-630-47-00 / Fax: +48-12-630-47-01
23) Germany FA Center

MITSUBISHI ELECTRIC EUROPE B.V. German Branch
Gothaer Strasse 8, D-40880 Ratingen, Germany
Tel: +49-2102-486-0 / Fax: +49-2102-486-1120

24) UK FA Center

MITSUBISHI ELECTRIC EUROPE B.V. UK Branch
Travellers Lane, Hatfield, Hertfordshire, AL10 8XB, U.K Tel: +44-1707-28-8780 / Fax: +44-1707-27-8695

25 Czech Republic FA Center

MITSUBISHI ELECTRIC EUROPE B.V. Czech Branch
Avenir Business Park, Radlicka 751/113e, 15800
Praha5, Czech Republic
Tel: +420-251-551-470 / Fax: +420-251-551-47
26 Russia FA Center
MITSUBISHI ELECTRIC EUROPE B.V. Russian
Branch St. Petersburg office
Piskarevsky pr. 2, bld 2, lit "Sch", BC "Benua", office 720; 195027, St. Petersburg, Russia
Tel: +7-812-633-3497 / Fax: +7-812-633-3499
27) Turkey FA Center

MITSUBISHI ELECTRIC TURKEY A.Ş Ümraniye Branch
Serifali Mahallesi Nutuk Sokak No:5, TR-34775
Umraniye, Istanbul, Turkey
Tel: +90-216-526-3990 / Fax: +90-216-526-3995

Factory Automation Global website

Mitsubishi Electric Factory Automation provides a mix of services to support its customers worldwide. A consolidated global website is the main portal, offering a selection of support tools and a window to its local Mitsubishi Electric sales and support network.

■ From here you can find:

- Overview of available factory automation products
- Library of downloadable literature
- Support tools such as online e-learning courses, terminology dictionary, etc.
- Global sales and service network portal
- Latest news related to Mitsubishi Electric factory automation

Mitsubishi Electric Factory Automation
Global website:
www.MitsubishiElectric.com/fa

Online e-learning

An extensive library of e-learning courses covering the factory automation product range has been prepared. Courses from beginner to advanced levels of difficulty are available in various languages.

[^7]
Innovative next-generation, e-Manual

The e-Manual viewer is a next-generation digital manual offered by Mitsubishi Electric that consolidates all manuals into an easy-to-use package with various useful features integrated into the viewer. The e-Manual is modeled around a centralized database allowing multiple manuals to be cross-searched at once, further reducing the time for reading individual product manuals when setting up a control system.

Key features include

- Included with GX Works3 engineering software
- Also available in tablet version
- Easily download manuals all at once
- Automatic update of manual versions
- Search information across multiple manuals
- Visual navigation from hardware diagram showing various specifications
- Customizable by adding user notes and bookmarks
- Directly port sample programs within manuals to GX Works3

■ MITSUBISHI ELECTRIC FA e-Manual (tablet version)

The e-Manual application is available on iOS and Android ${ }^{T M}$ tablets.
e-Manual files are provided as in-app downloads.

- Supported versions

[^8]
Product List

Please check the compatibility and restrictions of the product in the related manual before purchasing.
[Legend] DB : Double brand product ${ }^{(\text {Note) }}$ NEW : Recently released product SOON : Product available soon

MELSEC-L series

Type	Model	Outline
CPU	L02SCPU	Number of I/O points: 1024 points, Number of I/O device points: 8192 points, Program capacity: 20K steps, Basic operation processing speed (LD instruction): 60 ns , Program memory capacity: 80 KB, Peripheral connection ports: USB and RS-232 (Predefined protocol support function), Memory card I/ F: None, Built-in I/O functions (General-purpose input: 16 points, General purpose output (Sink type): 8 points, Interrupt input, Pulse catch, Positioning, High-speed counter), END cover included
	L02SCPU-P	Number of I/O points: 1024 points, Number of I/O device points: 8192 points, Program capacity: 20K steps, Basic operation processing speed (LD instruction): 60 ns , Program memory capacity: 80 KB , Peripheral connection ports: USB and RS-232 (Predefined protocol support function), Memory card I/F: None, Built-in I/O functions (General-purpose input: 16 points, General-purpose output (Source type): 8 points, Interrupt input, Pulse catch, Positioning, High-speed counter), END cover included
	L02CPU	Number of I/O points: 1024 points, Number of I/O device points: 8192 points, Program capacity: 20K steps, Basic operation processing speed (LD instruction): 40 ns , Program memory capacity: 80 KB, Peripheral connection ports: USB and Ethernet (Predefined protocol support function), Memory card I/F: SD Memory Card, Built-in I/O functions (General-purpose input: 16 points, General-purpose output (Sink type): 8 points, Interrupt input, Pulse catch, Positioning, High-speed counter), END cover included
	L02CPU-P	Number of I/O points: 1024 points, Number of I/O device points: 8192 points, Program capacity: 20K steps, Basic operation processing speed (LD instruction): 40 ns , Program memory capacity: 80 KB, Peripheral connection ports: USB and Ethernet (Predefined protocol support function), Memory card I/F: SD Memory Card, Built-in I/O functions (General-purpose input: 16 points, General-purpose output (Source type): 8 points, Interrupt input, Pulse catch, Positioning, High-speed counter), END cover included
	L06CPU	Number of I/O points: 4096 points, Number of I/O device points: 8192 points, Program capacity: 60K steps, Basic operation processing speed (LD instruction): 9.5 ns , Program memory capacity: 240 KB, Peripheral connection ports: USB and Ethernet (Predefined protocol support function), Memory card I/F: SD Memory Card, Built-in I/O functions (General-purpose input: 16 points, General-purpose output (Sink type): 8 points, Interrupt input, Pulse catch, Positioning, High-speed counter), END cover included
	L06CPU-P	Number of I/O points: 4096 points, Number of I/O device points: 8192 points, Program capacity: 60K steps, Basic operation processing speed (LD instruction): 9.5 ns, Program memory capacity: 240 KB, Peripheral connection ports: USB and Ethernet (Predefined protocol support function), Memory card I/F: SD Memory Card, Built-in I/O functions (General-purpose input: 16 points, General-purpose output (Source type): 8 points, Interrupt input, Pulse catch, Positioning, High-speed counter), END cover included
	L26CPU	Number of I/O points: 4096 points, Number of I/O device points: 8192 points, Program capacity: 260K steps, Basic operation processing speed (LD instruction): 9.5 ns , Program memory capacity: 1040 KB, Peripheral connection ports: USB and Ethernet (Predefined protocol support function), Memory card I/F: SD Memory Card, Built-in I/O functions (General-purpose input: 16 points, General-purpose output (Sink type): 8 points, Interrupt input, Pulse catch, Positioning, High-speed counter), END cover included
	L26CPU-P	Number of I/O points: 4096 points, Number of I/O device points: 8192 points, Program capacity: 260K steps, Basic operation processing speed (LD instruction): 9.5 ns , Program memory capacity: 1040 KB, Peripheral connection ports: USB and Ethernet (Predefined protocol support function), Memory card I/F: SD Memory Card, Built-in I/O functions (General-purpose input: 16 points, General-purpose output (Source type): 8 points, Interrupt input, Pulse catch, Positioning, High-speed counter), END cover included
	L26CPU-BT	Number of I/O points: 4096 points, Number of I/O device points: 8192 points, Program capacity: 260K steps, Basic operation processing speed (LD instruction): 9.5 ns , Program memory capacity: 1040 KB, Peripheral connection ports: USB and Ethernet (Predefined protocol support function), Memory card I/F: SD Memory Card, Built-in I/O functions (General-purpose input: 16 points, General-purpose output (Sink type): 8 points, Interrupt input, Pulse catch, Positioning, High-speed counter), CC-Link master/local station function, END cover included
	L26CPU-PBT	Number of I/O points: 4096 points, Number of I/O device points: 8192 points, Program capacity: 260K steps, Basic operation processing speed (LD instruction): 9.5 ns , Program memory capacity: 1040 KB, Peripheral connection ports: USB and Ethernet (Predefined protocol support function), Memory card I/F: SD Memory Card, Built-in I/O functions (General-purpose input: 16 points, General-purpose output (Source type): 8 points, Interrupt input, Pulse catch, Positioning, High-speed counter), CC-Link master/local station function, END cover included
CPU packages	L02CPU-SET	CPU module (L02CPU), Display unit (L6DSPU), and Power supply module (L61P) set
	L02CPU-P-SET	CPU module (L02CPU-P), Display unit (L6DSPU), and Power supply module (L61P) set
	L06CPU-SET	CPU module (L06CPU), Display unit (L6DSPU), and Power supply module (L61P) set
	L06CPU-P-SET	CPU module (L06CPU-P), Display unit (L6DSPU), and Power supply module (L61P) set
	L26CPU-SET	CPU module (L26CPU), Display unit (L6DSPU), and Power supply module (L61P) set
	L26CPU-P-SET	CPU module (L26CPU-P), Display unit (L6DSPU), and Power supply module (L61P) set
	L26CPU-BT-SET	CPU module (L26CPU-BT), Display unit (L6DSPU), and Power supply module (L61P) set
	L26CPU-PBT-SET	CPU module (L26CPU-PBT), Display unit (L6DSPU), and Power supply module (L61P) set

MELSEC-L series

Type			Model	Outline
CPU options	Display unit		L6DSPU	STN black-and-white LCD, 16 characters x 4 lines
	Battery		Q6BAT	Replacement battery
			Q7BAT-SET	High capacity battery with a battery holder for CPU installation
			Q7BAT	High capacity replacement battery
	SD Memory Card		NZ1MEM-2GBSD*1	SD memory card, capacity: 2 GB
			NZ1MEM-4GBSD*1	SDHC memory card, capacity: 4 GB
			NZ1MEM-8GBSD*1	SDHC memory card, capacity: 8 GB
			NZ1MEM-16GBSD*1	SDHC memory card, capacity: 16 GB
	RS-232 adapter		L6ADP-R2	For GOT(HMI) connection, $1 \times$ RS-232 channel, maximum transmission speed: 115.2Kpbs, MELSOFT connectable MODBUS ${ }^{\oplus}$ RTU master function (using predefined protocol support function)
	RS-422/485 adapter		L6ADP-R4	For GOT(HMI) connection, $1 \times$ RS-422/485 channel, maximum transmission speed: 115.2Kpbs MODBUS ${ }^{\circledR}$ RTU master function (using predefined protocol support function)
END cover with error terminal			L6EC-ET	END cover with error terminal
Power supply			L61P	Input voltage: 100... 240 V AC, Output voltage: 5 V DC, Output current: 5 A
			L63P	Input voltage: 24 V DC, Output voltage: 5 V DC, Output current: 5 A
Slim type Power supply			L63SP	Input voltage: 24 V DC, Output voltage: 5 V DC, Output current: 5 A , No isolation
Branch / Extension module			L6EXB	Branch module
			L6EXE	Extension module with END cover
	Extension cable		LC06E	$0.6-\mathrm{m}$ cable for connecting branch and extension modules
			LC10E	$1.0-\mathrm{m}$ cable for connecting branch and extension modules
			LC30E	3.0-m cable for connecting branch and extension modules
I/O module	Input	AC input	LX10	16 points, 100... 120 V AC, Response time: 20 ms or less, 16 points/common, 18-point terminal block
			LX28	8 points, 100... 240 V AC, Response time: 20 ms or less, 8 points/common, 18-point terminal block
		DC input	LX40C6	16 points, 24 V DC, Response time: 1/5/10/20/70 ms or less, 16 points/common, Positive/Negative common, 18-point terminal block
			LX41C4	32 points, 24 V DC, Response time: 1/5/10/20/70 ms or less, 32 points/common, Positive/Negative common, 40-pin connector
			LX42C4	64 points, 24 V DC, Response time: 1/5/10/20/70 ms or less, 32 points/common, Positive/Negative common, 40-pin connector x2
	Relay		LY10R2	16 points, 24 V DC/240 V AC, $2 \mathrm{~A} /$ point, $8 \mathrm{~A} /$ common, Response time: 12 ms or less, 16 points/common, 18-point terminal block
			LY18R2A	8 points, 24 V DC/240 V AC, $2 \mathrm{~A} /$ point, $8 \mathrm{~A} /$ module, Response time: 12 ms or less, No common (all points independent), 18-point terminal block
	Output	Triac	LY20S6	16 points, $100 \ldots .240 \mathrm{~V} \mathrm{AC}, 0.6 \mathrm{~A} /$ point, $4.8 \mathrm{~A} /$ common, Response time: $1 \mathrm{~ms}+0.5$ cycles or less, 16 points/common, 18-point terminal block
			LY28S1A	8 points, $100 \ldots 240 \mathrm{~V}$ DC, $1 \mathrm{~A} /$ point, $8 \mathrm{~A} /$ module, Response time: $1 \mathrm{~ms}+0.5$ cycles or less, No common (all points independent), 18-point terminal block
		$\begin{aligned} & \text { Transistor } \\ & \text { (Sink) } \end{aligned}$	LY40NT5P	16 points, $12 \ldots 24 \mathrm{~V}$ DC, $0.5 \mathrm{~A} /$ point, $5 \mathrm{~A} /$ common, Response time: 1 ms or less, 16 points/common, 18-point terminal block, overload protection function, overheat protection function, surge suppression
			LY41NT1P	32 points, $12 \ldots 24$ V DC, $0.1 \mathrm{~A} /$ point, $2 \mathrm{~A} /$ common, Response time: 1 ms or less, 32 points/common, Sink type, 40-pin connector, overload protection function, overheat protection function, surge suppression
			LY42NT1P	64 points, $12 \ldots .24 \mathrm{~V}$ DC, $0.1 \mathrm{~A} /$ point, $2 \mathrm{~A} /$ common, Response time: 1 ms or less, 32 points/common, Sink type, 40-pin connector x2, overload protection function, overheat protection function, surge suppression
		Transistor (Source)	LY40PT5P	16 points, $12 \ldots .24 \mathrm{~V}$ DC, $0.5 \mathrm{~A} /$ point, $5 \mathrm{~A} /$ common, Response time: 1 ms or less, 16 points/common, 18-point terminal block, overload protection function, overheat protection function, surge suppression
			LY41PT1P	32 points, $12 \ldots 24 \mathrm{~V}$ DC, $0.1 \mathrm{~A} /$ point, $2 \mathrm{~A} /$ common, Response time: 1 ms or less, 32 points/common, 40-pin connector, overload protection function, overheat protection function, surge suppression
			LY42PT1P	64 points, $12 \ldots 24 \mathrm{~V}$ DC, $0.1 \mathrm{~A} /$ point, $2 \mathrm{~A} /$ common, Response time: 1 ms or less, 32 points/common, 40-pin connector x2, overload protection function, overheat protection function, surge suppression
	I/O combined	DC input/transistor output (sink)	LH42C4NT1P	Input specifications$: 32$ points, $24 \mathrm{~V} \mathrm{DC} ,\mathrm{Response} \mathrm{time:} 1 / 5 / 10 / 20 / 70 \mathrm{~ms}$ or less, 32 points/common, Positive/Negative common Output specifications : 32 points, $12 \ldots 24 \mathrm{VDC}, 0.1 \mathrm{~A} /$ point, $2 \mathrm{~A} /$ common, Response time: 1 ms or less, 32 points/common, overload protection function, overheat protection function, surge suppression $40-$ pin connector x2
		DC input/transistor output (source)	LH42C4PT1P	Input specifications$: 32$ points, $24 \mathrm{~V} \mathrm{DC} ,\mathrm{Response} \mathrm{time:} 1 / 5 / 10 / 20 / 70 \mathrm{~ms}$ or less, 32 points/common, Positive/Negative common Output specifications : 32 points, $12 \ldots 24 \mathrm{VDC}, 0.1 \mathrm{~A} /$ point, $2 \mathrm{~A} /$ common, Response time: 1 ms or less, 32 points/common, overload protection function, overheat protection function, surge suppression $40-$ pin connector x2
Space module			LG69	Space module for AnS module replacement
Spring clamp terminal block			L6TE-18S	Alternative to a 18-point screw terminal block, $0.3 \ldots 1.0 \mathrm{~mm}^{2}$ (AWG22...18), push-in type

*1: Mitsubishi Electric does not guarantee the operation of non-Mitsubishi Electric products.

MELSEC-L series

Type		Model	Outline
Multiple input (voltage/current/temperature) modules		L60MD4-G	4 channels, Input: -10... 10 V DC, $0 \ldots 20 \mathrm{mADC}$, micro voltage-100... 100 mV DC, Thermocouple (K, J, T, E, N, R, S, B, U, L, PL II, W5Re/W26Re), RTD (Pt1000, Pt100, JPt100, Pt50), Output (resolution): 0...20000, -20000...20000, (with voltage, current, micro voltage input) Conversion speed: $50 \mathrm{~ms} /$ channels, 18 -point terminal block, Channel isolated
Analog I/O module	Analog input	L60AD4	4 channels, Input: - $10 \ldots 10$ V DC, $0 \ldots 20 \mathrm{~mA}$ DC, Output (resolution): $0 . . .20000,-20000 \ldots 20000$, Conversion speed: $20 \mu \mathrm{~s}, 80 \mu \mathrm{~s}, 1 \mathrm{~ms} /$ channel, 18 -point terminal block
		L60ADVL8	8 channels, Input: -10... 10 V , Output (resolution)-16000...16000, Conversion speed: $1 \mathrm{~ms} /$ channels 18-point terminal block
		L60ADIL8	8 channels, Input: $0 \ldots . .20 \mathrm{~mA} \mathrm{DC}$, Output (resolution): $0 \ldots . .8000$, Conversion speed: $1 \mathrm{~ms} /$ channels 18-point terminal block
		L60AD4-2GH	4 channels, Input: -10... 10 V DC, $0 . . .20 \mathrm{~mA}$ DC, Output (resolution): $0 . . .32000,-32000 \ldots 32000$, Conversion speed: $40 \mu \mathrm{~s} / 2$ channels, 18 -point terminal block, Dual channel isolation
	Analog output	L60DA4	4 channels, Input (resolution): $0 \ldots 20000,-20000 \ldots 20000$, Output: - $10 \ldots 10 \mathrm{~V}$ DC, $0 \ldots 20 \mathrm{mADC}$, Conversion speed: $20 \mu \mathrm{~s} /$ channel, 18 -point terminal block
	Analog I/O	L60AD2DA2	
Temperature input module	RTD input	L60RD8	8 channels, RTD (Pt1000, Pt100, JPt100, Pt50, Ni500, Ni120, Ni100, Cu100, Cu50) Resolution: $0.1^{\circ} \mathrm{C}$, Conversion speed: $40 \mathrm{~ms} / \mathrm{ch}, 24$-point spring clamp terminal block
Temperature control module	Thermocouple input	L60TCTT4	4 channels (normal mode) /2 channels (heating-cooling control), Thermocouple (K, J, T, B, S, E, R, N, U, L, PL II, W5Re/W26Re), No Heater disconnection detection function, sampling cycle: $250 \mathrm{~ms} / 4$ channels, $500 \mathrm{~ms} / 4$ channels, Channel isolated, 18 point terminal block
		L60TCTT4BW	4 channels (normal mode)/2 channels (heating-cooling control), Thermocouple (K, J, T, B, S, E, R, N, U, L, PL II, W5Re/W26Re), Heater disconnection detection function, Sampling cycle: $250 \mathrm{~ms} / 4$ channels, $500 \mathrm{~ms} / 4$ channels, Channel isolated, 18 point terminal block x2
	RTD input	L60TCRT4	4 channels (normal mode) /2 channels (heating-cooling control), Platinum type resistive temperature device(Pt100, JPt100), No Heater disconnection detection function, Sampling cycle: $250 \mathrm{~ms} / 4$ channels, $500 \mathrm{~ms} / 4$ channels, Channel isolated, 18 point terminal block
		L60TCRT4BW	4 channels (normal mode) /2 channels (heating-cooling control), Platinum type resistive temperature device (Pt100, JPt100), Heater disconnection detection function, Sampling cycle: $250 \mathrm{~ms} / 4$ channels, $500 \mathrm{~ms} / 4$ channels, Channel isolated, 18 point terminal block x2
Simple motion module	SSCNET II/H	LD77MS2*1	2 axes, 2-axis linear interpolation, 2-axis circular interpolation, synchronous control, Control unit: mm, inch, degree, pulse, Number of positioning data: 600 data/axis, SSCNET III/H connectivity
		LD77MS4*1	4 axes, 2-/3-/4-axis linear interpolation, 2-axis circular interpolation, synchronous control, Control unit: mm, inch, degree, pulse, Number of positioning data: 600 data/axis, SSCNET III/H connectivity
		LD77MS16*1	16 axes, 2-/3-/4-axis linear interpolation, 2-axis circular interpolation, synchronous control, Control unit: mm, inch, degree, pulse, Number of positioning data: 600 data/axis, SSCNET III/H connectivity
Positioning module	Open collector	LD75P1	1 axis, Control unit: mm, inch, degree, pulse, Number of positioning data: 600 data/axis, Maximum output pulse: 200 kpps , 40 -pin connector
		LD75P2	2 axes, 2-axis linear interpolation, 2-axis circular interpolation, Control unit: mm , inch, degree, pulse, Number of positioning data: 600 data/axis, Maximum output pulse: $200 \mathrm{kpps}, 40$-pin connector
		LD75P4	4 axes, 2-/3-/4-axis linear interpolation, 2-axis circular interpolation, Control unit: mm , inch, degree, pulse, Number of positioning data: 600 data/axis, Maximum output pulse: $200 \mathrm{kpps}, 40$-pin connector x2
	Differential driver	LD75D1	1 axis, Control unit: mm, inch, degree, pulse, Number of positioning data: 600 data/axis, Maximum output pulse: 4 Mpps, 40-pin connector
		LD75D2	2 axes, 2-axis linear interpolation, 2-axis circular interpolation, Control unit: mm , inch, degree, pulse, Number of positioning data: 600 data/axis, Maximum output pulse: 4 Mpps, 40 -pin connector
		LD75D4	4 axes, 2-/3-/4-axis linear interpolation, 2-axis circular interpolation, Control unit: mm , inch, degree, pulse, Number of positioning data: 600 data/axis, Maximum output pulse: 4 Mpps, 40 -pin connector $\times 2$
Flexible high-speed I/O control module		LD40PD01	12 input points (all for 5 V DC/24 V DC/differential) 14 output points (8 points for DC (5 V DC... 24 V), 6 points for differential)
High-speed counter module		LD62	2 channels, 200/100/10 kpps, Count input signal: 5/12/24 V DC, External input: $5 / 12 / 24 \mathrm{~V}$ DC, Coincidence output: transistor (sink), $12 / 24 \mathrm{~V} \mathrm{DC}, 0.5 \mathrm{~A} /$ point, $2 \mathrm{~A} /$ common, 40 -pin connector
		LD62D	2 channels, $500 / 200 / 100 / 10 \mathrm{kpps}$, Count input signal: EIA standards RS-422-A (Differential line driver level), External input: $5 / 12 / 24 \mathrm{~V}$ DC, Coincidence output: transistor (sink), $12 / 24 \mathrm{~V} \mathrm{DC}, 0.5 \mathrm{~A} /$ point, $2 \mathrm{~A} /$ common, 40-pin connector

*1: The connector is not appended. Please obtain an LD77MHIOCON separately.

MELSEC-L series

Type		Model	Outline
Network module	CC-Link IE Field Network	LJ71GF11-T2	Master/Local station
		LJ72GF15-T2*1	Remote station (Head module with END cover)
	CC-Link	LJ61BT11	Master/Local station, CC-Link Ver.2.0 compatible
	CC-Link/LT	LJ61CL12	Master station, CC-Link/LT system compatible
	SSCNET III/H	LJ72MS15*2	Remote station (Head module with END cover)
	Ethernet interface	LJ71E71-100	10BASE-T/100BASE-TX BACnet ${ }^{\text {TM }}$ client function, MODBUS ${ }^{\circledR}$ TCP master function (using predefined protocol support function)
	Serial communication	LJ71C24	RS-232: 1 channel, RS-422/485: 1 channel, Total transmission speed of 2 channels: 230.4 kbps MODBUS ${ }^{\circledR}$ RTU master function (using predefined protocol support function)
		LJ71C24-R2	RS-232: 2 channels, Total transmission speed of 2 channels: 230.4 kbps MODBUS® RTU master function (using predefined protocol support function)
Digital link sensor		LJ51AW12AL DB	AnyWireASLINK system compatible master module

*1: The CPU module, branch and extension module, display unit, RS-232 adapter, CC-Link IE Field Network master/local module and Ethernet interface module cannot be mounted on a system using LJ72GF-T2.
*2: The CPU module, branch and extension module, display unit, RS-232 adapter, temperature control module, simple motion module, positioning module, CC-Link IE Field Network master/local module, CC-Link IE Field network head module, CC-Link master/local module, CC-Link/LT master module, Ethernet interface module, serial communication module, and AnyWireASLINK master module cannot be mounted on a system using LJ72MS15.

Compatible module for each protocol

Compatible protocol	Compatible module	Model	Outline
SLMP (MC protocol)	CPU (Built-in Ethernet)	$\begin{array}{\|l\|} \hline \text { L02CPU(-P) } \\ \text { L06CPU(-P) } \\ \text { L26CPU(-P) } \\ \text { L26CPU-(P)BT } \\ \hline \end{array}$	SLMP server function (only MC protocol QnA compatible 3E frame) SLMP client function (using predefined protocol support function)
	Ethernet interface module	LJ71E71-100	SLMP server function (including MC protocol) SLMP client function (using predefined protocol support function)
BACnet ${ }^{\text {TM }}$	CPU (Built-in Ethernet)	$\begin{aligned} & \hline \text { L02CPU(-P) } \\ & \text { L06CPU(-P) } \\ & \text { L26CPU(-P) } \\ & \text { L26CPU-(P)BT } \\ & \hline \end{aligned}$	Compatible BACnet ${ }^{\text {TM }}$ object: Analog Input (AI), Binary Input (BI), Binary Output (BO), Accumulator (AC) (using predefined protocol support function)
	Ethernet interface module	LJ71E71-100	
MODBUS®/TCP	CPU (Built-in Ethernet)	$\begin{aligned} & \hline \text { L02CPU(-P) } \\ & \text { L06CPU(-P) } \\ & \text { L26CPU(-P) } \\ & \text { L26CPU-(P)BT } \\ & \hline \end{aligned}$	MODBUS ${ }^{\circledR} / T C P$ communication master function (using predefined protocol support function)
	Ethernet interface module	LJ71E71-100	
MODBUS ${ }^{\text {® }}$	CPU (Built-in RS-232)	L02SCPU(-P)	MODBUS®RTU communication master function (using predefined protocol support function)
	RS-232 adapter	L6ADP-R2	
	RS-422/485 adapter	L6ADP-R4	
	Serial Communication Modules	LJ71C24(-R2)	

Options

Type	Model	Outline
Connector	A6CON1*3*4	Soldering type 32-point connector (40-pin connector)
	A6CON2*3*4	Crimp contact type 32-point connector (40-pin connector)
	A6CON3 ${ }^{* 3 * 5}$	Flat cable pressure welding type 32-point connector (40-pin connector)
	A6CON4*3*4	Soldering type 32-point connector (40-pin connector, cable connectable in bidirection)
Connector/terminal block converter module	A6TBXY36*6*7*8	For positive common type input module and sink type output module (Standard type)
	A6TBXY54*6*7*8	For positive common type input module and sink type output module (2-wire type)
	A6TBX70*6*9	For positive common type input module (3-wire type)

*3: Available for the L Series CPU, LX41C4, LX42C4, LY41NT1P, LY42NT1P, LY41PT1P, LY42PT1P, LH42C4NT1P, and LH42C4PT1P.
*4: Available for LD75P1, LD75P2, LD75P4, LD75D1, LD75D2, LD75D4, LD40PD01, LD62 and LD62D.
${ }^{*} 5$: Available for the L Series CPU when using all the I/O signals for normal I/O output functions.
*6: Available for LX41C4 and LX42C4. (Positive common only)
*7: Available for LY41NT1P, LY42NT1P, LY41PT1P and LY42PT1P.
*8: Available for LH42C4NT1P and LH42C4PT1P. (Input side only when using plus common.)
*9: Available for LH42C4NT1P and LH42C4PT1P. (Input side only when using plus common. Output side is not usable.)

Ethernet related products

Type		Model	Outline
Wireless LAN Adapter	U.S.A.	NZ2WL-US*10*11 DB	Conforms to IEEE 802.11a, IEEE 802.11b, IEEE 802.11g standards
	Europe	NZ2WL-EU*10*11 DB	Conforms to IEEE 802.11a, IEEE 802.11b, IEEE 802.11g standards
	China	NZ2WL-CN**10*11 DB	Conforms to IEEE 802.11a, IEEE 802.11b, IEEE 802.11g standards
	Korea	NZ2WL-KR*10*11 DB	Conforms to IEEE 802.11a, IEEE 802.11b, IEEE 802.11g standards
	Taiwan	NZ2WL-TW**10*11 DB	Conforms to IEEE 802.11a, IEEE 802.11b, IEEE 802.11g standards
Industrial switching HUB			$10 \mathrm{Mbps} / 100 \mathrm{Mbps} / 1$ Gbps AUTO-MDIX, DIN rail mountable, 8 ports
		NZ2EHF-T8 DB	$10 \mathrm{Mbps} / 100 \mathrm{Mbps}$ AUTO-MDIX, DIN rail mountable, 8 ports

[^9]*11: Both access points and stations are supported, and can be switched with the settings.
"For details on the software versions compatible with each module, refer to the manual for each product.
Please contact your local Mitsubishi Electric sales office or representative for the latest information about MELSOFT software versions and compatible operating systems.

MELSOFT — Programming Tool

Type	Model	Outline
MELSOFT iQ Works	SW2DND-IQWK-E	FA engineering software ${ }^{\star 1}$ - System Management Software: MELSOFT Navigator - Controller Programming Software: MELSOFT GX Works3*2, GX Works2, GX Developer - Motion Programming Software: MELSOFT MT Works2 - HMI Programming Software: MELSOFT GT Works3 - Robot Programing Software: MELSOFT RT ToolBox2 mini - Inverter Setup Software: MELSOFT FR Configurator2 - C Controller setting and monitoring tool: MELSOFT CW Configurator - MITSUBISHI ELECTRIC FA Library
MELSOFT GX Works3	SW1DND-GXW3-E	Controller Programming Software: MELSOFT GX Works3*2 MITSUBISHI ELECTRIC FA Library Comes with GX Works2 and GX Developer
MELSOFT GX Works2	SW1DNC-GXW2-E	Controller Programming Software Comes with GX Developer
MELSOFT MX Component	SW4DNC-ACT-E	Active ${ }^{\ominus}$ library for communication
	SW1DNC-ACTAND-B	Library for communication (for Android application development) (Japanese/English version)
	SW1MIC-ACTIOS-B	Library for communication (for iOS application development) (Japanese/English version)
MELSOFT MX Sheet	SW2DNC-SHEET-E*3	Excel ${ }^{\oplus}$ communication support tool
MELSOFT MX Works	SW2DNC-SHEETSET-E	A set of two products: MELSOFT MX Component, MELSOFT MX Sheet

*1: For detailed information about supported modules, refer to the manuals of the relevant software package.
*2: The MELSOFT GX Works3 menu is switchable between Japanese, English, and simplified Chinese. (Traditional Chinese and Korean will be supported soon.)
*3: To use MELSOFT MX Sheet, MELSOFT MX Component is required.

Compliance with international quality assurance standards

All of Mitsubishi Electric's FA products have acquired the international quality assurance "ISO9001" and environment management system standard "ISO14001" certification. Mitsubishi Electric's products also comply with various safety standards, including UL standards.
*For jointly developed and partner products, guaranteed quality standards may differ. Please refer to the product manuals for details.

Safety Standards

CE : Council Directive of the European Communities
 Listing

Excel, ActiveX are registered trademarks of Microsoft Corporation in the United States and other countries.
ETHERNET is a trademark of Xerox Corp.
SD/SDHC logo is a trademark of SD-3C, LLC.
MODBUS is a registered trademark of Schneider Electric USA, Inc.
BACnet is a registered trademark of ASHRAE.
Cognex, In-Sight, DataMan, VisionView and UltraLight are registered trademarks of Cognex Corporation.
Hotbars is a trademark of Cognex Corporation.
All other company names and product names used in this document are trademarks or registered trademarks of their respective companies.

Precautions before use

This publication explains the typical features and functions of the products herein and does not provide restrictions or other information related to usage and module combinations. Before using the products, always read the product user manuals. Mitsubishi Electric will not be held liable for damage caused by factors found not to be the cause of Mitsubishi Electric; opportunity loss or lost profits caused by faults in Mitsubishi Electric products; damage, secondary damage, or accident compensation, whether foreseeable or not, caused by special factors; damage to products other than Mitsubishi Electric products; or any other duties.

\triangle For safe use

- To use the products given in this publication properly, always read the relevant manuals before beginning operation.
- The products have been manufactured as general-purpose parts for general industries, and are not designed or manufactured to be incorporated in a device or system used in purposes related to human life
- Before using the products for special purposes such as nuclear power, electric power, aerospace, medicine or passenger-carrying vehicles, consult with Mitsubishi Electric.
- The products have been manufactured under strict quality control. However, when installing the products where major accidents or losses could occur if the products fail, install appropriate backup or fail-safe functions in the system.

YOUR SOLUTION PARTNER

Mitsubishi Electric offers a wide range of automation equipment from PLCs and HMIs to CNC and EDM machines.

A NAME TO TRUST

Since its beginnings in 1870, some 45 companies use the Mitsubishi name, covering a spectrum of finance, commerce and industry.

The Mitsubishi brand name is recognized around the world as a symbol of premium quality.

Mitsubishi Electric Corporation is active in space development, transportation, semi-conductors, energy systems, communications and information processing, audio visual equipment and home electronics, building and energy management and automation systems, and has 237 factories and laboratories worldwide in over 121 countries.

This is why you can rely on Mitsubishi Electric automation solution because we know first hand about the need for reliable, efficient, easy-to-use automation and control in our own factories.

As one of the world's leading companies with a global turnover of over 4 trillion Yen (over $\$ 40$ billion), employing over 100,000 people, Mitsubishi Electric has the resource and the commitment to deliver the ultimate in service and support as well as the best products.

Medium voltage: VCB, VCC

Power monitoring, energy management

Compact and Modular Controllers

Inverters, Servos and Motors

Visualization: HMIs, Software, MES connectivity

Robots: SCARA, Articulated arm

Processing machines: EDM, Lasers, IDS

Air-conditioning, Photovoltaic, EDS

Country/Region	Sales office	Tel/Fax
USA	MITSUBISHI ELECTRIC AUTOMATION, INC. 500 Corporate Woods Parkway, Vernon Hills, IL 60061, U.S.A.	$\begin{aligned} & \text { Tel : +1-847-478-2100 } \\ & \text { Fax : +1-847-478-2253 } \end{aligned}$
Mexico	MITSUBISHI ELECTRIC AUTOMATION, INC. Mexico Branch Mariano Escobedo \#69, Col. Zona Industrial, Tlalnepantla Edo, C.P.54030, Mexico	Tel : +52-55-3067-7500
Brazil	MITSUBISHI ELECTRIC DO BRASIL COMÉRCIO E SERVIÇOS LTDA. Rua Jussara, 1750-Bloco B Anexo, Jardim Santa Cecilia, CEP 06465-070, Barueri-SP, Brasil	$\begin{aligned} & \text { Tel : +55-11-4689-3000 } \\ & \text { Fax : +55-11-4689-3016 } \end{aligned}$
Germany	MITSUBISHI ELECTRIC EUROPE B.V. German Branch Gothaer Strasse 8, D-40880 Ratingen, Germany	$\begin{aligned} & \text { Tel : +49-2102-486-0 } \\ & \text { Fax : +49-2102-486-1120 } \end{aligned}$
UK	MITSUBISHI ELECTRIC EUROPE B.V. UK Branch Travellers Lane, Hattield, Hertfordshire, AL10 8XB, U.K.	$\begin{aligned} & \text { Tel : +44-1707-28-8780 } \\ & \text { Fax : +44-1707-27-8695 } \end{aligned}$
Ireland	MITSUBISHI ELECTRIC EUROPE B.V. Irish Branch Westgate Business Park, Ballymount, IRL-Dublin 24, Ireland	$\begin{aligned} & \text { Tel : + } 353-1-4198800 \\ & \text { Fax : +353-1-4198890 } \end{aligned}$
Italy	MITSUBISHI ELECTRIC EUROPE B.V. Italian Branch Centro Direzionale Colleoni-Palazzo Sirio Viale Colleoni 7, 20864 Agrate Brianza(Milano) Italy	$\begin{aligned} & \text { Tel : + } 39-039-60531 \\ & \text { Fax : +39-039-6053-312 } \end{aligned}$
Spain	MITSUBISHI ELECTRIC EUROPE, B.V. Spanish Branch Carretera de Rubí, 76-80-Apdo. 420, 08173 Sant Cugat del Vallés (Barcelona), Spain	$\begin{aligned} & \text { Tel : + } 34-935-65-3131 \\ & \text { Fax : +34-935-89-1579 } \end{aligned}$
France	MITSUBISHI ELECTRIC EUROPE B.V. French Branch 25, Boulevard des Bouvets, F-92741 Nanterre Cedex, France	$\begin{aligned} & \text { Tel : + } 33-1-55-68-55-68 \\ & \text { Fax : +33-1-55-68-57-57 } \end{aligned}$
Czech Republic	MITSUBISHI ELECTRIC EUROPE B.V. Czech Branch Avenir Business Park, Radlicka 751/113e, 15800 Praha5, Czech Republic	$\begin{aligned} & \text { Tel : +420-251-551-470 } \\ & \text { Fax : +420-251-551-471 } \end{aligned}$
Poland	MITSUBISHI ELECTRIC EUROPE B.V. Polish Branch ul. Krakowska 50, 32-083 Balice, Poland	$\begin{aligned} & \text { Tel : + +48-12-630-47-00 } \\ & \text { Fax : +48-12-630-47-01 } \end{aligned}$
Sweden	MITSUBISHI ELECTRIC EUROPE B.V. (Scandinavia) Fjelievägen 8, SE-22736 Lund, Sweden	$\begin{aligned} & \text { Tel : +46-8-625-10-00 } \\ & \text { Fax : +46-46-39-70-18 } \end{aligned}$
Russia	MITSUBISHI ELECTRIC EUROPE B.V. Russian Branch St. Petersburg office Piskarevsky pr. 2, bld 2, lit "Sch", BC "Benua", office 720; RU-195027 St. Petersburg, Russia	$\begin{aligned} & \text { Tel : + 7-812-633-3497 } \\ & \text { Fax : +7-812-633-3499 } \end{aligned}$
Turkey	MITSUBISHI ELECTRIC TURKEY A.Ş Ümraniye Branch Serifali Mahallesi Nutuk Sokak No:5, TR-34775 Umraniye, Istanbul, Turkey	$\begin{aligned} & \text { Tel : + } 90-216-526-3990 \\ & \text { Fax : +90 -216-526-3995 } \end{aligned}$
UAE	MITSUBISHI ELECTRIC EUROPE B.V. Dubai Branch Dubai Silicon Oasis, P.O.BOX 341241, Dubai, U.A.E.	$\begin{aligned} & \text { Tel : +971-4-3724716 } \\ & \text { Fax : +971-4-3724721 } \end{aligned}$
South Africa	ADROIT TECHNOLOGIES 20 Waterford Office Park, 189 Witkoppen Road, Fourways, Johannesburg, South Africa	$\begin{aligned} & \text { Tel : + } 27-11-658-8100 \\ & \text { Fax : +27-11-658-8101 } \end{aligned}$
China	MITSUBISHI ELECTRIC AUTOMATION (CHINA) LTD. No. 1386 Hongqiao Road, Mitsubishi Electric Automation Center, Shanghai, China	$\begin{aligned} & \text { Tel : +86-21-2322-3030 } \\ & \text { Fax : +86-21-2322-3000 } \end{aligned}$
Taiwan	SETSUYO ENTERPRISE CO., LTD. 6F, No.105, Wugong 3rd Road, Wugu District, New Taipei City 24889, Taiwan, R.O.C.	$\begin{aligned} & \text { Tel : + } 886-2-2299-2499 \\ & \text { Fax : +886-2-2299-2509 } \end{aligned}$
Korea	MITSUBISHI ELECTRIC AUTOMATION KOREA CO., LTD. 7F-9F, Gangseo Hangang Xi-tower A, 401, Yangcheon-ro, Gangseo-Gu, Seoul 157-801, Korea	$\begin{aligned} & \text { Tel: : +82-2-3660-9530 } \\ & \text { Fax : +82-2-3664-8372 } \end{aligned}$
Singapore	MITSUBISHI ELECTRIC ASIA PTE. LTD. 307, Alexandra Road, Mitsubishi Electric Building, Singapore 159943	$\begin{aligned} & \text { Tel : + } 65-6473-2308 \\ & \text { Fax : }+65-6476-7439 \end{aligned}$
Thailand	MITSUBISHI ELECTRIC FACTORY AUTOMATION (THAILAND) CO., LTD. 12th Floor, SV.City Building, Office Tower 1, No. 896/19 and 20 Rama 3 Road, Kwaeng Bangpongpang, Khet Yannawa, Bangkok 10120, Thailand	$\begin{aligned} & \text { Tel : +66-2682-6522 } \\ & \text { Fax : +66-2682-6020 } \end{aligned}$
Vietnam	MITSUBISHI ELECTRIC VIETNAM COMPANY LIMITED Hanoi Branch 6-Floor, Detech Tower, 8 Ton That Thuyet Street, My Dinh 2 Ward, Nam Tu Liem District, Hanoi, Vietnam	$\begin{aligned} & \text { Tel: : +84-4-3937-8075 } \\ & \text { Fax : +84-4-3937-8076 } \end{aligned}$
Indonesia	PT. MITSUBISHI ELECTRIC INDONESIA Gedung Jaya 11th Floor, JL. MH. Thamrin No.12, Jakarta Pusat 10340, Indonesia	$\begin{aligned} & \text { Tel : +62-21-3192-6461 } \\ & \text { Fax : +62-21-3192-3942 } \end{aligned}$
India	MITSUBISHI ELECTRIC INDIA PVT. LTD. Pune Branch Emerald House, EL-3, J Block, M.I.D.C Bhosari, Pune-411026, Maharashtra, India	$\begin{aligned} & \text { Tel : +91-20-2710-2000 } \\ & \text { Fax : +91-20-2710-2100 } \end{aligned}$
Australia	MITSUBISHI ELECTRIC AUSTRALIA PTY. LTD. 348 Victoria Road, P.O. Box 11, Rydalmere, N.S.W 2116, Australia	$\begin{aligned} & \text { Tel : +61-2-9684-7777 } \\ & \text { Fax : +61-2-9684-7245 } \end{aligned}$

Mitsubishi Electric Corporation Nagoya Works is a factory certified for ISO 14001 (standards for environmental management systems) and ISO 9001 (standards for quality assurance management systems).

[^0]: *1: Option (sold separately). Does not support LO2SCPU(-P).
 *2: Included with L26CPU-(P)BT
 *3: Included with L02CPU(-P), L06CPU(-P), L26CPU(-P), L26CPU-(P)BT

[^1]: When adding a branch module to a fully occupied block, relocate one of the
 other modules to a new block to give way to the branch module.

[^2]: *1: There is no isolation between the primary side 24 V DC and secondary side 5 V DC

[^3]: *3: Only temperature measurement using a temperature input terminal can be performed.
 *4: Heating-cooling control is performed using an output module in the system.

[^4]: *2: For further information on "Flexible High-Speed I/O Control Module Configuration Tool", please contact your local Mitsubishi sales representative

[^5]: *1: The total number of modules that can be installed onto a CC-Link IE Field Network head module. (END cover and power supply module are not included.) Note that only one head module per system is possible.
 *2: Standard (straight type) cable.

[^6]: *2: When the cables other than dedicated flat cables, VCTF cables, and flexible cables are used, performance of CCLink/LT is not guaranteed
 ${ }^{*} 3$: Use the dedicated flat cables and flexible cables accredited by CC-Link Partner Association. CC-Link Partner Association website: http://www.cc-link.org
 *4: Refer to the manual for details regarding VCTF cable specifications.
 *5: Set the number of occupied I/O points using the operation setting switch. Refer to the manual for details.
 *6: 24 V DC power supply is supplied through the dedicated power supply or power supply adapter.

[^7]: ■ Beginner level
 Designed for newcomers to Mitsubishi Electric Factory Automation products gaining a background of the fundamentals and an overview of various products related to the course.

 ■ Basic to Advanced levels
 These courses are designed to provide education at all levels. Various different features are explained with application examples providing an easy and informative resource for in-house company training.

[^8]: *1: When using a tablet not listed above, 7 -inch (resolution of 1920×1200 dots (WUXGA)) or better is recommended.

[^9]: *10: Each product is usable only in the respective country.

